This SuperSeries is composed of the SubSeries listed below.
The B-cell receptor controls fitness of MYC-driven lymphoma cells via GSK3β inhibition.
No sample metadata fields
View SamplesSimilar to resting mature B cells, where the B-cell antigen receptor (BCR) is essential for cellular survival, surface BCR expression is conserved in most mature B cell lymphomas. The identification of activating BCR mutations and the growth disadvantage upon BCR knockdown of cells of certain lymphoma entities has led to the view that BCR signaling is required for tumour cell survival. Consequently, the BCR signaling machinery has become a new target in the therapy of B cell malignancies. Here, we studied the effects of BCR ablation on MYC-driven mouse B cell lymphomas and compared them to observations in human Burkitt lymphoma. Whereas BCR ablation did not, per se, significantly affect lymphoma growth, BCR-negative (BCR-) tumour cells rapidly disappeared in the presence of their BCR-expressing (BCR+) counterparts in vitro and in vivo. This required neither cellular contact, nor factors released by BCR+ tumour cells. Instead, BCR loss induced the rewiring of central carbon metabolism increasing the sensitivity of receptor-less lymphoma cells to nutrient restriction. The BCR attenuated GSK3 activity to support MYC-controlled gene expression. BCR- tumour cells exhibited increased GSK3 activity and were rescued from their competitive growth disadvantage by GSK3. BCR-negative lymphoma variants that restored competitive fitness, normalized GSK3 following constitutive activation of the MAPK pathway, commonly through Ras mutations. Similarly, in Burkitt lymphoma, activating RAS mutations may propagate Ig-crippled tumour cells, which usually represent a minority of the tumour bulk. Thus, while BCR expression enhances lymphoma cell fitness, BCR-targeted therapies may profit from combinations with drugs targeting BCR-less tumour cells.
The B-cell receptor controls fitness of MYC-driven lymphoma cells via GSK3β inhibition.
No sample metadata fields
View SamplesGene expression analysis identified a CRC related signature of differentially expressed genes discriminating patients Responder and Non Responder to radiochemotherapy
A functional biological network centered on XRCC3: a new possible marker of chemoradiotherapy resistance in rectal cancer patients.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesA human bone marrow-derived mesenchymal stromal cell (MSCs) and cord blood-derived CD34+ stem cell co-culture system was set up in order to evaluate the proliferative and differentiative effects induced by MSCs on CD34+ stem cells, and the reciprocal influences on gene expression profiles
Mesenchymal stromal cells (MSCs) induce ex vivo proliferation and erythroid commitment of cord blood haematopoietic stem cells (CB-CD34+ cells).
Specimen part
View SamplesGene expression analysis identified a MLL translocation-specific signature of differentially expressed genes discriminating ALL and AML with and without MLL rearrangements.
MLL rearrangements in pediatric acute lymphoblastic and myeloblastic leukemias: MLL specific and lineage specific signatures.
No sample metadata fields
View SamplesWe analysed whole PolyA+ RNA from human osteosarcoma U2OS cells depleted for human Cactin or transfected with a control shRNA. Overall design: Two independent shRNAs targeting human Cactin (shCac_C and shCac_D), a control shRNA (shCtrl), a single cell line (U2OS)
Human cactin interacts with DHX8 and SRRM2 to assure efficient pre-mRNA splicing and sister chromatid cohesion.
Cell line, Treatment, Subject, Time
View SamplesWe used microarrays to study the changes in the transcriptional profile upon Snail knockdown in murine lung adenocarcinomas
Snail mediates repression of the Dlk1-Dio3 locus in lung tumor-infiltrating immune cells.
Age, Specimen part
View SamplesRNA from 5 mice with postdevelopmental knockout of myostatin and 5 mice with normal myostatin expression was analyzed with comprehensive oligonucleotide microarrays. Myostatin depletion affected the expression of several hundred genes at nominal P < 0.01, but fewer than a hundred effects were statistically significant according to a more stringent criterion (false discovery rate < 5%). Most of the effects were less than 1.5-fold in magnitude. In contrast to previously-reported effects of constitutive myostatin knockout, postdevelopmental knockout did not downregulate expression of genes encoding slow isoforms of contractile proteins or genes encoding proteins involved in energy metabolism. Several collagen genes were expressed at lower levels in the myostatin-deficient muscles, and this led to reduced tissue collagen levels as reflected by hydroxyproline content. Myostatin knockout tended to down-regulate the expression of sets of genes with promoter motifs for Smad3, Smad4, myogenin, NF-B, serum response factor, and numerous other transcription factors. Main conclusions: in mature muscle, myostatin is a key transcriptional regulator of collagen genes, but not genes encoding contractile proteins or genes encoding proteins involved in energy metabolism.
Skeletal muscle gene expression after myostatin knockout in mature mice.
Sex, Age, Specimen part
View SamplesWe used microarrays to study the changes in the transcriptional profile upon Snail overexpression in murine lung adenocarcinomas
Snail mediates repression of the Dlk1-Dio3 locus in lung tumor-infiltrating immune cells.
Age, Specimen part
View SamplesGlobal transcriptome patterns were determined in XVE-14 and wild-type seedlings induced for 45 min b-estradiol in order to identify the genes early regulated by EBE transcription factor.
EBE, an AP2/ERF transcription factor highly expressed in proliferating cells, affects shoot architecture in Arabidopsis.
Specimen part
View Samples