Throughout Metazoa, developmental processes are controlled by a surprisingly limited number of conserved signaling pathways. Precisely how these signaling cassettes were assembled in early animal evolution remains poorly understood, as do the molecular transitions that potentiated the acquisition of their myriad developmental functions. Here we analyze the molecular evolution of the proto-oncogene YAP/Yorkie, a key effector of the Hippo signaling pathway that controls organ size in both Drosophila and mammals. Based on heterologous functional analysis of evolutionarily distant Yap/Yorkie orthologs, we demonstrate that a structurally distinct interaction interface between Yap/Yorkie and its partner TEAD/Scalloped became fixed in the eumetazoan common ancestor. We then combine transcriptional profiling of tissues expressing phylogenetically diverse forms of Yap/Yorkie with ChIP-seq validation in order to identify a common downstream gene expression program underlying the control of tissue growth in Drosophila. Intriguingly, a subset of the newly-identified Yorkie target genes are also induced by Yap in mammalian tissues, thus revealing a conserved Yap-dependent gene expression signature likely to mediate organ size control throughout bilaterian animals. Combined, these experiments provide new mechanistic insights while revealing the ancient evolutionary history of Hippo signaling. We sought to define the downstream target genes of selected Yap variants by performing RNA sequencing analysis (RNA-seq) on total RNA isolated from GMR-Gal4>Yap eye discs. Overall design: Transcriptional profiles were generated in triplicate from eye imaginal disks with either endogenous Yki, or GMR-Gal4 over-expressed Yki, Trichoplax Yap, Monosiga Yap, or Monisiga Yap+TEAD domain, using deep sequencing via Illumina Hi Seq.
Molecular evolution of the Yap/Yorkie proto-oncogene and elucidation of its core transcriptional program.
Treatment, Subject
View SamplesRegulation of gene expression is integral to the development and survival of all organisms. Transcription begins with the assembly of a pre-initiation complex at the gene promoter, followed by initiation of RNA synthesis and the transition to productive elongation. In many cases, recruitment of RNA polymerase II (Pol II) to a promoter is necessary and sufficient for activation of gene. However, there are a few notable exceptions to this paradigm, including heat shock genes and several proto-oncogenes, whose expression is attenuated by regulated stalling of polymerase elongation within the promoter-proximal region. To determine the importance of polymerase stalling for transcription regulation, we performed a genome-wide search for Drosophila genes with promoter-proximally stalled Pol II. Our data reveal that stalling is widespread, occurring at hundreds of genes that respond to stimuli and developmental signals, indicating a role for regulation of polymerase elongation in the transcriptional responses to dynamic environmental and developmental cues.
RNA polymerase is poised for activation across the genome.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Poised RNA polymerase II changes over developmental time and prepares genes for future expression.
Specimen part, Cell line, Treatment, Time
View SamplesMurine ES cell gene expression before RA induction are used to compare gene expression for time-points of 8, 12, 16, 24, 36, 48, 60 and 72 hours post-induction.
Poised RNA polymerase II changes over developmental time and prepares genes for future expression.
Cell line, Treatment, Time
View SamplesPoised RNA polymerase II is predominantly found at developmental control genes and is thought to allow their rapid and synchronous induction in response to extracellular signals. How the recruitment of poised RNA Pol II is regulated during development is not known. By isolating muscle tissue from Drosophila embryos at five stages of differentiation, we show that the recruitment of poised Pol II occurs at many genes de novo and this makes them permissive for future gene expression. When compared to other tissues, these changes are stage-specific and not tissue-specific. In contrast, Polycomb group repression is tissue-specific and in combination with Pol II (the balanced state) marks genes with highly dynamic expression. This suggests that poised Pol II is temporally regulated and is held in check in a tissue-specific fashion. We compare our data to mammalian embryonic stem cells and discuss a framework for predicting developmental programs based on chromatin state. Overall design: mRNA-seq of Drosophila tissues during development
Poised RNA polymerase II changes over developmental time and prepares genes for future expression.
Specimen part, Subject, Time
View SamplesMost individuals with cystic fibrosis (CF) carry one or two mutations that result in a maturation defect of the full-length CFTR protein. The deltaF508 mutation results in a mutant protein that is degraded by the proteasome instead of progressing to the apical membrane where it functions as a cyclic AMP-regulated chloride channel. 4 phenylbutyrate modulates heat shock protein expression and promotes trafficking of deltaF508 thus permitting maturation and membrane insertion. The goal of this study was to gain insight into the genetic mechanism of PBA action through a large-scale analysis of gene expression. The Affymetrix genome spanning U133 microarray set was used to compare mRNA expression in untreated IB3-1 cell line cultures with cultures treated with 1mM 4-phenylbuyterate for 12 and 24 hr. IB3-1 deltaF508/W1282X) bronchial epithelial cells were cultured in T75 flasks with gentamicin-free LHC-8 medium. Cells were fed with 10 ml of media every 2 to 3 days. After reaching 80% confluence cells were treated with 1 mM PBA. A T75 flask of confluent IB3-1 cells was rinsed twice with ice cold Hanks buffer then scraped into 3ml of ice cold TRIzol (Gibco BRL) then rinsed with 3 ml ice cold TRIzol and the mRNA was isolated according to the TRIzol protocol. A total of 5 control cultures, 3 cultures with 12 hr BPA application and 3 cultures with 24 hr PBA application were processed
Gene expression profile analysis of 4-phenylbutyrate treatment of IB3-1 bronchial epithelial cell line demonstrates a major influence on heat-shock proteins.
No sample metadata fields
View SamplesArgonaute (Ago) proteins associate with microRNAs (miRNAs), which guide them to complementary target mRNAs resulting in gene silencing.
Phosphorylation of Argonaute proteins affects mRNA binding and is essential for microRNA-guided gene silencing <i>in vivo</i>.
Cell line
View SamplesSummary: CF patients homozygous for the DF08 DF08 genotype present a full range of phenotypic manifestations that exist within the pulmonary system. This project aims to identify candidate genes that influence the severity of pulmonary disease
Respiratory epithelial gene expression in patients with mild and severe cystic fibrosis lung disease.
No sample metadata fields
View SamplesCystic Fibrosis lung disease progresses by a combination of accelerated airways inflammation and bacterial colonization and infection. Airways inflammation in CF is predominantly neutrophilic and complicates airway clearance therapies through cellular debris, excessive DNA, excessive and viscous mucous, and high concentrations of neutrophils,Il-8 and related cytokines liberated along the NFkB signaling pathway. We conducted a single site, randomized, double blind, placebo-controlled, proof-of-concept trial in which we evaluated the effects of 28 days of two dose levels (0.05 mg and 0.10 mg daily) of an older cardiac glycoside, digitoxin, as compared with placebo, on inflammatory markers in induced sputum obtained from 24 subjects with mild to moderate CF lung disease. Nasal epithelial cells from 23 subjects were analyzed for microarray analysis. CF patients 18 to 45 years old, any genotype combination, were eligible.
Digitoxin for Airway Inflammation in Cystic Fibrosis: Preliminary Assessment of Safety, Pharmacokinetics, and Dose Finding.
Specimen part, Disease, Disease stage, Treatment, Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
VEGF-B signaling impairs endothelial glucose transcytosis by decreasing membrane cholesterol content.
Age, Specimen part, Cell line, Treatment
View Samples