refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon GSE9844
Transcriptomic Dissection of Tongue Squamous Cell Carcinoma
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The head and neck / oral squamous cell carcinoma (HNOSCC) is a diverse group of cancers, which develop from many different anatomic sites and are associated with different risk factors and genetic characteristics. The oral tongue squamous cell carcinoma (OTSCC) is one of the most common types of HNOSCC. It is significantly more aggressive than other forms of HNOSCC, in terms of local invasion and spread. In this study, we aim to identify specific transcriptomic signatures that associated with OTSCC.

Publication Title

Transcriptomic dissection of tongue squamous cell carcinoma.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE2280
Prediction of lymphatic metastasis from primary squamous cell carcinoma of the oral cavity
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Metastasis via the lymphatics is a major risk factor in squamous cell carcinoma of the oral cavity (OSCC). We sought to determine whether the presence of metastasis in the regional lymph node could be predicted by a gene expression signature of the primary tumor. A total of 18 OSCCs were characterized for gene expression by hybridizing RNA to Affymetrix U133A gene chips. Genes with differential expression were identified using a permutation technique and verified by quantitative RT-PCR and immunohistochemistry. A predictive rule was built using a support vector machine, and the accuracy of the rule was evaluated using crossvalidation on the original data set and prediction of an independent set of four patients. Metastatic primary tumors could be differentiated from nonmetastatic primary tumors by a signature gene set of 116 genes. This signature gene set correctly predicted the four independent patients as well as associating five lymph node metastases from the original patient set with the metastatic primary tumor group. We concluded that lymph node metastasis could be predicted by gene expression profiles of primary oral cavity squamous cell carcinomas. The presence of a gene expression signature for lymph node metastasis indicates that clinical testing to assess risk for lymph node metastasis should be possible.

Publication Title

Gene expression signature predicts lymphatic metastasis in squamous cell carcinoma of the oral cavity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15774
Transcriptional networks regulated by drugs of abuse in mouse striatum
  • organism-icon Mus musculus
  • sample-icon 108 Downloadable Samples
  • Technology Badge IconIllumina mouse-6 v1.1 expression beadchip

Description

In summary, we characterized genomic signatures of response to drugs of abuse and we found positive correlations between the drug-induced expression and various behavioral effects. These signatures are formed by two dynamically inducible transcriptional networks: (1) CREB/SRF-dependent gene pattern that appears to be related to drug-induced neuronal activity, (2) the pattern of genes controlled at least in part via release of glucocorticoids and androgens that are associated with rewarding and harmful drug effects. The discovery of co-expressed networks of genes allowed for the identification of master-switch controlling factors involved in molecular response to the drugs. Finally, using the pharmacological tools we were able to dissect and inhibit particular gene expression patterns from genomic profile.

Publication Title

The dissection of transcriptional modules regulated by various drugs of abuse in the mouse striatum.

Sample Metadata Fields

Compound, Time

View Samples
accession-icon GSE114026
7-month-old mdx mouse hearts wild-type and deficient for cardiomyocyte-specific IKK
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

NF-κB inhibition rescues cardiac function by remodeling calcium genes in a Duchenne muscular dystrophy model.

Sample Metadata Fields

Age

View Samples
accession-icon GSE114025
Expression data from 7-month-old mdx mouse hearts wild-type and deficient for cardiomyocyte-specific IKK
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We found genetic deletion of IKK in mdx cardiomyocytes improved cardiac function and normalized calcium transients. We used microarrays to profile gene expression in hearts of mdx mice with intact IKK signaling and hearts of mdx mice with IKK-deficient cardiomyocytes to identify genes differentially regulated by NF-[kappa]B. signaling in dystrophic hearts.

Publication Title

NF-κB inhibition rescues cardiac function by remodeling calcium genes in a Duchenne muscular dystrophy model.

Sample Metadata Fields

Age

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact