This dataset contains whole-genome RNA sequencing results from rat embryonic hippocampal neuronal cultures and serves as the basis for characterization of CRISPR/dCas9 gene activation in neuronal systems. Overall design: This experiment contains 9 biological samples, each of which underwent directional, paired-end PolyA+ RNA-seq on an Illumina Next-seq 500. Samples were treated with Lacz sgRNA (LZ2, LZ4, & LZ5), Bdnf-I sgRNA (B16, B17, B18), or Bdnf-IV sgRNA (BIV11, BIV14, BIV15), in addition to a dCas9-VPR fusion. Datasets were obtained using RNA-seq from PolyA+ fractions fractions of RNA. Each sample has multiple files, corresponding to different sequencing lanes (e.g., L001, L002, etc) or different reads (e.g., R1, R2).
A Neuron-Optimized CRISPR/dCas9 Activation System for Robust and Specific Gene Regulation.
Specimen part, Cell line, Treatment, Subject
View SamplesWe performed RNA-Seq transcriptome profiling on 29 immune cell types consituting peripheral blood mononuclear cells (PBMCs) sorted from 4 Singaporean-Chinese individuals (S4 cohort). We also performed RNA-Seq and microarray transcriptome profiling of PBMCs from an extended cohort of 13 individuals (S13 cohort). The data was used first to characterize the transcriptomic signatures and relationships among the 29 immune cell types. Then we explored the difference in mRNA composition in terms of transcripts proportions and abundance. Lastly, we performed deep deconvolution for both microarray and RNA-Seq technologies. Overall design: Total RNA of 29 immune cell types (from 4 individuals) and peripheral blood mononuclear cells (PBMCs, from 13 individuals) was extracted for gene expression profiling. The 13 PBMCs samples were processed with both microarray and RNA-Seq platforms.
RNA-Seq Signatures Normalized by mRNA Abundance Allow Absolute Deconvolution of Human Immune Cell Types.
Sex, Specimen part, Disease, Subject
View SamplesEvidence from mouse chronic viral infection models suggests that CD8+ T cell subsets characterized by distinct expression levels of the receptor PD-1 diverge in their state of exhaustion and potential for reinvigoration by PD-1 blockade. However, it remains unknown whether T cells in human cancer adopt a similar spectrum of exhausted states based on PD-1 expression levels. We compared transcriptional, metabolic, and functional signatures of intratumoral CD8+ T lymphocyte populations with high (PD-1T), intermediate (PD-1N) and no PD-1 expression (PD-1-) from non-small cell lung cancer patients. We observed that, PD-1T T cells show a markedly different transcriptional and metabolic profile as compared to PD-1N and PD-1- lymphocytes, as well as an intrinsically high capacity for tumor recognition. Furthermore, while PD-1T lymphocytes are impaired in classical effector cytokine production, they produce CXCL13 that mediates immune cell recruitment to tertiary lymphoid structures. Strikingly, the presence of PD-1T cells was strongly predictive for both response and survival in a small cohort of non-small cell lung cancer patients treated with PD-1 blockade. The characterization of a distinct state of tumor-reactive, PD-1 bright lymphocytes in human cancer, which only partially resembles that seen in chronic infection, provides novel potential avenues for therapeutic intervention. Overall design: Intratumoral CD8+ T cells from 11 non-small cell lung cancer patients that were sub-sorted into PD1-high (PD-1T), PD1-intermediate (PD-1N) and PD1-negative (PD-1-) cells, were sequenced using Illumina HiSeq4000. In addition, peripheral blood effector memory T cells from 4 healthy donors were sequenced using Illumina HiSeq4000.
A transcriptionally and functionally distinct PD-1<sup>+</sup> CD8<sup>+</sup> T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state.
Sex, Specimen part
View SamplesWe address the molecular mechanisms through which MYC promotes loss of cell identity and acquisition of stem cell-like traits, favouring the onset of tumorigenesis, by performing gene expression profile analyses in a transition from WT IMEC, IMEC over-expressing MYC and mammospeheres formed from IMEC-MYC (named M2). We then investigated the global gene expression profile of the fraction of cells hyper-activating the WNT pathway in M2 spheres, compared to the ones with low activation
MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Systematic classification of melanoma cells by phenotype-specific gene expression mapping.
Cell line
View SamplesRecent trials with MAPK inhibitors have shown promising results in many patients with metastatic melanoma; however, nearly all responding patients experience disease relapse. We describe here how melanoma cells respond to MAPK inhibition in a phenotype-specific manner, suggesting that slow cycling invasive phenotype cells provide a treatment-resistant pool from which disease relapse may be derived. The implication is that while MAPK inhibition may successfully treat proliferating cells, another cell population needs to be addressed at the same time.
A proliferative melanoma cell phenotype is responsive to RAF/MEK inhibition independent of BRAF mutation status.
Cell line
View SamplesIL-17-producing CD8+ (Tc17)T cells are implicated in the pathogenesis of multiple sclerosis (MS), thereby representing a promising target for therapy. We found that dimethyl fumarate (DMF), a first-line medication for MS upregulated reactive oxygen species (ROS) by glutathione depletion in murine Tc17 cells, which limited IL-17 and diverted Tc17 cells towards cytotoxic T lymphocyte (CTL) signature. DMF enhanced PI3K-AKT-FOXO1-T-bet- as well as STAT5-signaling leading to restricted permissive histone state at the Il17 locus. T-bet-deficiency, inhibiting PI3K-AKT, STAT5 or histone deacetylases prevented DMF-ROS-mediated IL-17 suppression. In MS patients with stable response, DMF suppressed IL-17 production by CD8+ T-cells and triggered diversion from Tc17 towards CTL signature along with enriched ROS-, PI3K-AKT-FOXO1-signaling, demonstrating comparable regulation across species. Accordingly, in the mouse model for MS, DMF limited Tc17-encephalitogenicity. Our findings disclose DMF-ROS-AKT-driven pathway, which selectively modulates Tc17 fate to ameliorate MS, thus opening avenue to develop markers and targets for specific therapy. Overall design: Examination of DMF-induced expression changes in 3 conditions, 3 samples each: murine TC17 cells without treatment as control group, murine Tc17 cells treated with DMF and murine Tc17 cells treated with DMF and Glutathione(GSH)
IL-17<sup>+</sup> CD8<sup>+</sup> T cell suppression by dimethyl fumarate associates with clinical response in multiple sclerosis.
Specimen part, Cell line, Subject
View SamplesIL-17-producing CD8+ (Tc17)T cells are implicated in the pathogenesis of multiple sclerosis (MS), thereby representing a promising target for therapy. We found that dimethyl fumarate (DMF), a first-line medication for MS upregulated reactive oxygen species (ROS) by glutathione depletion in murine Tc17 cells, which limited IL-17 and diverted Tc17 cells towards cytotoxic T lymphocyte (CTL) signature. DMF enhanced PI3K-AKT-FOXO1-T-bet- as well as STAT5-signaling leading to restricted permissive histone state at the Il17 locus. T-bet-deficiency, inhibiting PI3K-AKT, STAT5 or histone deacetylases prevented DMF-ROS-mediated IL-17 suppression. In MS patients with stable response, DMF suppressed IL-17 production by CD8+ T-cells and triggered diversion from Tc17 towards CTL signature along with enriched ROS-, PI3K-AKT-FOXO1-signaling, demonstrating comparable regulation across species. Accordingly, in the mouse model for MS, DMF limited Tc17-encephalitogenicity. Our findings disclose DMF-ROS-AKT-driven pathway, which selectively modulates Tc17 fate to ameliorate MS, thus opening avenue to develop markers and targets for specific therapy. Overall design: CD8+ memory cells from human blood
IL-17<sup>+</sup> CD8<sup>+</sup> T cell suppression by dimethyl fumarate associates with clinical response in multiple sclerosis.
Specimen part, Subject
View SamplesThe plasma protein FHR1 induces release of inflammatory cytokines IL-1ß, IL-6, IL-18 or TNFa from blood-derived human monocytes. RNA sequencing was performed from RNA of BSA- or FHR1-treated monocytes from 4 different donors. In response to FHR1, 522 monocytic genes were upregulated (gene ontology enrichment analysis), including 35 inflammation related genes, e.g. TNF. Also, G protein-coupled receptors such as EMR2/ADGRE2 were upregulated in response to FHR1. Overall design: Blood-derived monocytes were treated with BSA or FHR1, after 4h RNA was isolated. RNA of 4 donors were combined and sequenced.
Serum FHR1 binding to necrotic-type cells activates monocytic inflammasome and marks necrotic sites in vasculopathies.
Specimen part, Treatment, Subject
View Samples