This SuperSeries is composed of the SubSeries listed below.
Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity.
Sex, Specimen part
View SamplesPreviously, we reported that mice made transgenic for a picornaviral RdRP the 3Dpol protein of Theilers murine encephalomyelitis virus (TMEV) suppress infection by diverse viral families. How the picornaviral RdRP transgene exerted antiviral protection in vivo was not known. To investigate the molecular mechanism, we determined gene expression profiles in spinal cords of WT and RdRP transgenic mice prior to (baseline) and after (2 days) infection with Encephalomyocarditis Virus (EMCV).
Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity.
Sex
View SamplesPreviously, we reported that mice made transgenic for a picornaviral RdRP the 3Dpol protein of Theilers murine encephalomyelitis virus (TMEV) suppress infection by diverse viruses. Using mouse genetic studies, we determined that uninfected RdRP transgenic mice inherently induce an arsenel of prominent antiviral effectors and that this phenotype is MDA5-, MAVS- and IFNR-dependent. To determine the mechanism underlying MDA5 activation and induction of constitutive antiviral signaling by the picornaviral RdRP, we constructed mutant RdRP transgenes. First, we introduced pervasive, coding-neutral point mutations into the RdRP cDNA to maximally disrupt primary and secondary RNA structure (RdRPrna). Another mutant, RdRPcat, lacks catalytic activity due to alanine substitution of the key catalytic center triad aspartate residues (D233, D328, and D329), but is otherwise intact at the nucleotide and amino acid levels. The WT, RdRPrna, and RdRPcat versions of the RdRP transgenes were transduced with lentiviral vectors into human THP-1 monocytes, with RdRP mRNA transcription controlled by the Spleen Focus Forming Virus (SFFV) promoter. In parallel a control cell line transduced with a vector lacking any RdRP transgene (null THP-1) was generated.
Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity.
Specimen part
View SamplesPreviously, we reported that mice made transgenic for a picornaviral RdRP the 3Dpol protein of Theilers murine encephalomyelitis virus (TMEV) suppress infection by diverse viruses. Using mouse genetic studies, we determined that uninfected RdRP transgenic mice inherently induce an arsenel of prominent antiviral effectors and that this phenotype is MDA5-, MAVS- and IFNR-dependent. To determine the mechanism underlying MDA5 activation and induction of constitutive antiviral signaling by the picornaviral RdRP, we constructed mutant RdRP transgenes. First, we introduced pervasive, coding-neutral point mutations into the RdRP cDNA to maximally disrupt primary and secondary RNA structure (RdRPrna). Another mutant, RdRPcat, lacks catalytic activity due to alanine substitution of the key catalytic center triad aspartate residues (D233, D328, and D329), but is otherwise intact at the nucleotide and amino acid levels. The WT, RdRPrna, and RdRPcat versions of the RdRP transgenes were transduced with lentiviral vectors into human THP-1 monocytes, with RdRP mRNA transcription controlled by the Spleen Focus Forming Virus (SFFV) promoter. In parallel a control cell line transduced with a vector lacking any RdRP transgene (null THP-1) was generated.
Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity.
Specimen part
View SamplesPreviously, we reported that mice made transgenic for a picornaviral RdRP the 3Dpol protein of Theilers murine encephalomyelitis virus (TMEV) suppress infection by diverse viruses. Using mouse genetic studies, we determined that uninfected RdRP transgenic mice inherently induce an arsenel of prominent antiviral effectors and that this phenotype is MDA5-, MAVS- and IFNR-dependent. To determine the mechanism underlying MDA5 activation and induction of constitutive antiviral signaling by the picornaviral RdRP, we constructed mutant RdRP transgenes. First, we introduced pervasive, coding-neutral point mutations into the RdRP cDNA to maximally disrupt primary and secondary RNA structure (RdRPrna). Another mutant, RdRPcat, lacks catalytic activity due to alanine substitution of the key catalytic center triad aspartate residues (D233, D328, and D329), but is otherwise intact at the nucleotide and amino acid levels. The WT, RdRPrna, and RdRPcat versions of the RdRP transgenes were transduced with lentiviral vectors into human THP-1 monocytes, with RdRP mRNA transcription controlled by the Spleen Focus Forming Virus (SFFV) promoter. In parallel a control cell line transduced with a vector lacking any RdRP transgene (null THP-1) was generated.
Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity.
Specimen part
View SamplesPreviously, we reported that mice made transgenic for a picornaviral RdRP the 3Dpol protein of Theilers murine encephalomyelitis virus (TMEV) suppress infection by diverse viral families. How the picornaviral RdRP transgene exerted antiviral protection in vivo was not known. To investigate the molecular mechanism, we determined gene expression profiles in spinal cords of WT and RdRP transgenic mice prior to (baseline) and after (2 days) infection with Encephalomyocarditis Virus (EMCV).
Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity.
Sex
View SamplesPreviously, we reported that mice made transgenic for a picornaviral RdRP the 3Dpol protein of Theilers murine encephalomyelitis virus (TMEV) suppress infection by diverse viral families. How the picornaviral RdRP transgene exerted antiviral protection in vivo was not known. To investigate the molecular mechanism, we determined gene expression profiles in spinal cords of WT and RdRP transgenic mice prior to (baseline) and after (2 days) infection with Encephalomyocarditis Virus (EMCV).
Antiviral Protection via RdRP-Mediated Stable Activation of Innate Immunity.
Sex
View SamplesBackground: MicroRNAs (miRNAs) are a family of small, non-coding single-stranded RNA molecules involved in post-transcriptional regulation of gene expression. As such, they are believed to play a role in regulating the step-wise changes in gene expression patterns that occur during cell fate specification of multipotent stem cells. Here, we have studied whether terminal differentiation of C2C12 myoblasts is indeed controlled by lineage-specific changes in miRNA expression.
MicroRNA miR-378 promotes BMP2-induced osteogenic differentiation of mesenchymal progenitor cells.
Cell line
View SamplesGene Expression analysis of a differentiation timeseries of human Mesenchymal Stem Cells (hMSCs) in the presence of adipogenic/osteogenic factors. hMSCs differentiate into fat cells when treated with dexamethasone (10^-6 M), insulin (10 ug/ml), rosiglitazone (10^-7 M) and IBMX (250 uM). TGFbeta (5 ng/ml) inhibits this process and redirects these cells to differentiate into bone cells.
TGFβ-induced switch from adipogenic to osteogenic differentiation of human mesenchymal stem cells: identification of drug targets for prevention of fat cell differentiation.
Specimen part, Treatment, Time
View SamplesAlthough the effects of thyroid hormones (TH) on the brain development have been extensively studied perinatally, effects of TH of maternal origin on the fetal brain development have been largely unexplored. We applied a high throughput study on the mouse models with aberrant TH levels on gestation day (GD) 16, before the onset of fetal thyroid function. Although 3 day treatment with methimazole (MMI) and perchlorate significantly decreased TH levels in fetal cerebral cortex, few changes in the abundance of mRNA were revealed by the microarray analysis. Injection TH to dams 12 hours before sacrifice on GD 16 induced 161 genes significantly changed in fetal cortex. Nine out of 10 selected genes were confirmed with RT-PCR, including known TH responsive gene Klf9 and other novel TH responsive genes such as Appbp2, Ppap2b and Fgfr1op2. TH regulation of the expression of these genes was also confirmed with cultured N2a cells. Thyroid responsive elements (TREs) in the promoters of these genes were identified using electrophoresis mobility shift assay. TH effect on microRNA (miRNA) expression in developing cortex on GD 16 and postnatal day (PND) 15 was investigated with microarray and RT-PCR. Some of miRNAs and precursors decreased in fetal cortex from the dams injected with TH on GD 16, including miR-16 and miR-106. Using 3 untranslate region reporter vector, we identified Klf9 is one of the target genes of miR-106, while Ppap2b is the target of miR-16. These results indicated that TH regulation on gene expression could through TR-TRE interaction and through regulating target miRNA expression. This study is the first report to identify TH responsive genes and miRNAs genome wide in the early fetal brain; it provides evidence to further understand the mechanism of TH effect on brain development.
Transient Maternal Hypothyroxinemia Potentiates the Transcriptional Response to Exogenous Thyroid Hormone in the Fetal Cerebral Cortex Before the Onset of Fetal Thyroid Function: A Messenger and MicroRNA Profiling Study.
Specimen part, Treatment
View Samples