refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 15 results
Sort by

Filters

Technology

Platform

accession-icon GSE28260
Renal cortex and medulla microRNA and mRNA expression differences between hypertensive and normotensive patients
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Gene expression profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE75808
Differential Ly6C Expression after Renal Ischemia-Reperfusion Identifies Unique Macrophage Populations
  • organism-icon Mus musculus
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Macrophages are a heterogeneous cell type implicated in injury, repair, and fibrosis after AKI, but the macrophage population associated with each phase is unclear.results of this study in a renal ischemia-reperfusion injury model allow phenotype and function to be assigned to CD11b+/Ly6C+ monocyte/macrophage populations in the pathophysiology of disease after AKI.

Publication Title

Differential Ly6C Expression after Renal Ischemia-Reperfusion Identifies Unique Macrophage Populations.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP167701
ImmGen ULI: OpenSource Mononuclear Phagocytes Project
  • organism-icon Mus musculus
  • sample-icon 412 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Primary RNASeq data for progenitor, resident, and stimulated (C.alb, LPS, injury, APAP+ starved overnight and pIC) mononuclear phagocytes from fourteen organs. Overall design: RNASeq data for over 400 samples comprising of 130 populations submitted by 16 labs (both non-ImmGen and ImmGen labs) from 8 locations around the world for ImmGen OpenSource Mononuclear Project. Samples were sorted in these facilities using ImmGen's stringent ULI protocol and shipped to one location for library preparation and sequencing. Contributor: Immunological Genome Project Consortium

Publication Title

ImmGen report: sexual dimorphism in the immune system transcriptome.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE41258
Expression data from colorectal cancer patients
  • organism-icon Homo sapiens
  • sample-icon 389 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The study consist of patients who presented at Memorial Sloan-Kettering Cancer Center with a colonic neoplasm between 1992 and 2004. Biological specimens used in this study include primary colon adenocarcinomas, adenomas, metastasis and corresponding normal mucosae.

Publication Title

Association of survival and disease progression with chromosomal instability: a genomic exploration of colorectal cancer.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE68468
caArray_notte-00422: Molecular Dissection of Colon Cancer
  • organism-icon Homo sapiens
  • sample-icon 221 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

RNA expression data was generated as part of a colon cancer study. Samples were obtained from patients, including primary colon cancer, polyps, metastases, and matched normal mucosa (obtained from the margins of the resection). The RNA was extracted from tissue samples obtained from resections and hybridized to Affymetrix HG-U133 arrays. RNA expression data was also obtained for a few cell lines.

Publication Title

Association of survival and disease progression with chromosomal instability: a genomic exploration of colorectal cancer.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Cell line

View Samples
accession-icon SRP176663
ImmGen ULI: Male-Female Immune Differences
  • organism-icon Mus musculus
  • sample-icon 190 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Primary RNA Seq data for 11 diverse immunocyte populations from male and female mice of varying ages stimulated with different dose of IFN and sequenced using ImmGen's standard ultra-low input RNA-seq pipeline Overall design: RNASeq data for 11 cell populations from male and female mice generated by ImmGen labs to study sexual differences in the immune system (companion ATACseq datasets are found in GSE100738). These mice comprised of varying ages, including 6-8weeks and 2- 20months old. In addition, mice were stimulated with 1K and 10K Type 1 interferon to understand sex specific responses. contributor: Immunological Genome Project Consortium

Publication Title

ImmGen report: sexual dimorphism in the immune system transcriptome.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE37695
Poly(A) RNA profiling upon Gld2 knockdown in cultured hippocampal neurons
  • organism-icon Rattus norvegicus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Poly(A) RNA profiling upon Gld2 knockdown in cultured hippocampal neurons

Publication Title

Bidirectional control of mRNA translation and synaptic plasticity by the cytoplasmic polyadenylation complex.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE11348
Gene expression profiles during in vivo human rhinovirus infection: insights into the host response.
  • organism-icon Homo sapiens
  • sample-icon 89 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

RATIONALE: Human rhinovirus infections cause colds and trigger exacerbations of lower airway diseases. OBJECTIVES: To define changes in gene expression profiles during in vivo rhinovirus infections. METHODS: Nasal epithelial scrapings were obtained before and during experimental rhinovirus infection, and gene expression was evaluated by microarray. Naturally acquired rhinovirus infections, cultured human epithelial cells, and short interfering RNA knockdown were used to further evaluate the role of viperin in rhinovirus infections. MEASUREMENTS AND MAIN RESULTS: Symptom scores and viral titers were measured in subjects inoculated with rhinovirus or sham control, and changes in gene expression were assessed 8 and 48 hours after inoculation. Real-time reverse transcription-polymerase chain reaction for viperin and rhinoviruses was used in naturally acquired infections, and viperin mRNA levels and viral titers were measured in cultured cells. Rhinovirus-induced changes in gene expression were not observed 8 hours after viral infection, but 11,887 gene transcripts were significantly altered in scrapings obtained 2 days postinoculation. Major groups of up-regulated genes included chemokines, signaling molecules, interferon-responsive genes, and antivirals. Viperin expression was further examined and also was increased in naturally acquired rhinovirus infections, as well as in cultured human epithelial cells infected with intact, but not replication-deficient, rhinovirus. Knockdown of viperin with short interfering RNA increased rhinovirus replication in infected epithelial cells. CONCLUSIONS: Rhinovirus infection significantly alters the expression of many genes associated with the immune response, including chemokines and antivirals. The data obtained provide insights into the host response to rhinovirus infection and identify potential novel targets for further evaluation.

Publication Title

Gene expression profiles during in vivo human rhinovirus infection: insights into the host response.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE37209
Expression data from Paneth cells isolated from mice on calorie restricted or ad libitum diet
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Paneth cells recide in the intestinal crypt bottom and are part of the innate immunity and of the intestinal stem cell niche.

Publication Title

mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE13765
lincRNA Expression
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

There is growing recognition that mammalian cells produce many thousands of large intergenic transcripts. However, the functional significance of these transcripts has been particularly controversial. While there are some well-characterized examples, the vast majority (>95%) show little evidence of evolutionary conservation and have been suggested to represent transcriptional noise. Here, we report a new approach to identifying large non-coding RNAs (ncRNAs) by using chromatin-state maps to discover discrete transcriptional units intervening known protein-coding loci. Our approach identified ~1600 large multi-exonic RNAs across four mouse cell types. In sharp contrast to previous collections, these large intervening ncRNAs (lincRNAs) exhibit strong purifying selection in their genomic loci, exonic sequences, and promoter regions with greater than 95% showing clear evolutionary conservation. We also developed a novel functional genomics approach that assigns putative functions to each lincRNA, revealing a diverse range of roles for lincRNAs in processes from ES pluripotency to cell proliferation. We obtained independent functional validation for the predictions for over 100 lincRNAs, using cell-based assays. In particular, we demonstrate that specific lincRNAs are transcriptionally regulated by key transcription factors in these processes such as p53, NFKB, Sox2, Oc4, and Nanog. Together, these results define a unique collection of functional lincRNAs that are highly conserved and implicated in diverse biological processes.

Publication Title

Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact