This SuperSeries is composed of the SubSeries listed below.
Topoisomerases facilitate transcription of long genes linked to autism.
Age, Specimen part, Treatment
View SamplesTopoisomerases are necessary for the expression of neurodevelopmental genes, and are mutated in some patients with autism spectrum disorder (ASD). We have studied the effects of inhibitors of Topoisomerase 1 (Top1) and Topoisomerase 2 (Top2) enzymes on mouse cortical neurons. We find that topoisomerases selectively inhibit long genes (>100kb), with little effect on all other gene expression. Using ChIPseq against RNA Polymerase II (Pol2) we show that the Top1 inhibitor topotecan blocks transcriptional elongation of long genes specifically. Many of the genes inhibited by topotecan are candidate ASD genes, leading us to propose that topoisomerase inhibition might contribute to ASD pathology.
Topoisomerases facilitate transcription of long genes linked to autism.
Specimen part, Treatment
View SamplesTopoisomerases are necessary for the expression of neurodevelopmental genes, and are mutated in some patients with autism spectrum disorder (ASD). We have studied the effects of inhibitors of Topoisomerase 1 (Top1) and Topoisomerase 2 (Top2) enzymes on mouse cortical neurons. We find that topoisomerases selectively inhibit long genes (>100kb), with little effect on all other gene expression. Using ChIPseq against RNA Polymerase II (Pol2) we show that the Top1 inhibitor topotecan blocks transcriptional elongation of long genes specifically. Many of the genes inhibited by topotecan are candidate ASD genes, leading us to propose that topoisomerase inhibition might contribute to ASD pathology. Overall design: [Mouse] 5 biological replicates of transcriptome sequencing (RNAseq) from topotecan treated neurons and vehicle treated controls; Pol2 ChIPseq of topotecan and vehicle treated neurons [Human] Transcriptome sequencing (RNAseq) from topotecan treated neurons and vehicle treated control.
Topoisomerases facilitate transcription of long genes linked to autism.
No sample metadata fields
View SamplesCellular diversity within tumors and reduced lineage commitment can undermine targeted therapy by increasing the probability of treatment-resistant populations. Using single-cell RNA-seq, we analyzed cellular diversity and lineage in medulloblastomas in transgenic, medulloblastoma-prone mice, and responses to the SHH-pathway inhibitor vismodegib. Overall design: Drop-Seq single-cell transcriptome sequencing of 15 mice: 5 Wild Type cerebella, 5 Drug-treated cerebellar tumors and 5 vehicle-treated cerebellar tumros.
scRNA-seq in medulloblastoma shows cellular heterogeneity and lineage expansion support resistance to SHH inhibitor therapy.
Specimen part, Cell line, Treatment, Subject
View Samples