refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 253 results
Sort by

Filters

Technology

Platform

accession-icon GSE64819
Genome wide nucleosome specifity and function of chromatin remodellers in embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE70315
Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP059915
Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells [Atad2_ES_RNAseq_BI]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1000

Description

Although the conserved AAA ATPase – bromodomain factor, ATAD2, has been described as a transcriptional co-activator upregulated in many cancers, its function remains poorly understood. Here, using a combination of ChIP-seq, ChIP-proteomics and RNA-seq experiments in embryonic stem cells, we found that Atad2 is an abundant nucleosome-bound protein present on active genes, associated with chromatin remodelling, DNA replication and DNA repair factors. A structural analysis of its bromodomain and subsequent investigations demonstrate that histone acetylation guides ATAD2 to chromatin, resulting in an overall increase of chromatin accessibility and histone dynamics, which is required for the proper activity of the highly expressed gene fraction of the genome. While in exponentially growing cells Atad2 appears dispensable for cell growth, in differentiating ES cells, Atad2 becomes critical in sustaining specific gene expression programs, controlling proliferation and differentiation. Altogether, this work defines Atad2’s function as a facilitator of general chromatin-templated activities such as transcription. Overall design: We used a siRNA approach to knock-down Atad2 and measure the resulting variations in gene expression by RNA-seq

Publication Title

Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE64785
Genome wide nucleosome specifity and function of chromatin remodellers in embryonic stem cells [Chd9]
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

How various ATP-dependent chromatin remodellers bind to nucleosomes to regulate transcription is not well defined in mammalian cells. Here, we present genome-wide remodeller-interacting nucleosome profiles for Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind to nucleosomes at specific positions, either at one or both nucleosomes that flank each side of nucleosome-free promoter regions (NFRs), at enhancer elements, or within gene bodies. At promoters, bidirectional transcription commonly initiates on either side of remodeller-bound nucleosomes. Transcriptome analysis upon remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. At active genes, certain remodellers are positive regulators of transcription, whereas others act as repressors. At bivalent genes, which are bound by repressive Polycomb complexes, the same remodellers act in the opposite way. Together, these findings reveal how remodellers integrate promoter nucleosomal architecture to regulate ES cell transcription programs.

Publication Title

Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE64786
Genome wide nucleosome specifity and function of chromatin remodellers in embryonic stem cells [Ep400]
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

How various ATP-dependent chromatin remodellers bind to nucleosomes to regulate transcription is not well defined in mammalian cells. Here, we present genome-wide remodeller-interacting nucleosome profiles for Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind to nucleosomes at specific positions, either at one or both nucleosomes that flank each side of nucleosome-free promoter regions (NFRs), at enhancer elements, or within gene bodies. At promoters, bidirectional transcription commonly initiates on either side of remodeller-bound nucleosomes. Transcriptome analysis upon remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. At active genes, certain remodellers are positive regulators of transcription, whereas others act as repressors. At bivalent genes, which are bound by repressive Polycomb complexes, the same remodellers act in the opposite way. Together, these findings reveal how remodellers integrate promoter nucleosomal architecture to regulate ES cell transcription programs.

Publication Title

Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE69899
Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells [Microarray transcriptomic analysis]
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Although the conserved AAA ATPase bromodomain factor, ATAD2, has been described as a transcriptional co-activator upregulated in many cancers, its function remains poorly understood. Here, using a combination of ChIP-seq, ChIP-proteomics and RNA-seq experiments in embryonic stem cells, we found that Atad2 is an abundant nucleosome-bound protein present on active genes, associated with chromatin remodelling, DNA replication and DNA repair factors. A structural analysis of its bromodomain and subsequent investigations demonstrate that histone acetylation guides ATAD2 to chromatin, resulting in an overall increase of chromatin accessibility and histone dynamics, which is required for the proper activity of the highly expressed gene fraction of the genome. While in exponentially growing cells Atad2 appears dispensable for cell growth, in differentiating ES cells, Atad2 becomes critical in sustaining specific gene expression programs, controlling proliferation and differentiation. Altogether, this work defines Atad2s function as a facilitator of general chromatin-templated activities such as transcription.

Publication Title

Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE69555
Gene expression analyses of miR-99b and miR-330-3p overexpression in Natural killer cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

In order to define the targets of two miRNA overexpressed in NK cells in CFS/ME paitents, miRNA precursors for hsa-miR-99b and hsa-miR-330-3p were transfected in to buffy coat derived Natural Killer cells isolated by negative magnetic selection.

Publication Title

MicroRNAs hsa-miR-99b, hsa-miR-330, hsa-miR-126 and hsa-miR-30c: Potential Diagnostic Biomarkers in Natural Killer (NK) Cells of Patients with Chronic Fatigue Syndrome (CFS)/ Myalgic Encephalomyelitis (ME).

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE36555
Host-influenza A virus(infA) interactions
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Temporal- and strain-specific host microRNA molecular signatures associated with swine-origin H1N1 and avian-origin H7N7 influenza A virus infection.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE36553
mRNA profiling during infection with H1N1 influenza A virus (A/Mexico/InDRE4487/H1N1/2009)
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

MicroRNAs (miRNAs) repress the expression levels of genes by binding to mRNA transcripts, acting as master regulators of cellular processes. Differential expression of miRNAs has been linked to viral-associated diseases involving members of the hepacivirus, herpesvirus, and retrovirus families. In contrast, limited biological and molecular information has been reported on the potential role of cellular miRNAs in the lifecycle of influenza A viruses (infA). In this study, we hypothesize that elucidating the miRNA expression signatures induced by low-pathogenic swine-origin influenza A virus (S-OIV) pandemic H1N1 (2009) and highly pathogenic avian-origin (A-OIV) H7N7 (2003) infections could reveal temporal and strain-specific miRNA fingerprints during the viral lifecycle, shedding important insights into the potential role of cellular miRNAs in host-infA interactions. Using a microfluidic microarray platform, we profiled cellular miRNA expression in human A549 cells infected with S- and A-OIVs at multiple time-points during the viral lifecycle, including global gene expression profiling during S-OIV infection. Using target prediction and pathway enrichment analyses, we identified the key cellular pathways associated with the differentially expressed miRNAs and predicted mRNA targets during infA infection, including immune system, cell proliferation, apoptosis, cell cycle, and DNA replication and repair. By identifying the specific and dynamic molecular phenotypic changes (microRNAome) triggered by S- and A-OIV infection in human cells, we provide experimental evidence demonstrating a series of temporal- and strain-specific host molecular responses involving different combinatorial contributions of multiple cellular miRNAs. Our results also identify novel potential exosomal miRNA biomarkers associated with pandemic S-OIV and deadly A-OIV-host infection.

Publication Title

Temporal- and strain-specific host microRNA molecular signatures associated with swine-origin H1N1 and avian-origin H7N7 influenza A virus infection.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE20037
cdr2 siRNA knockdown during passage through mitosis: HeLa cells, Rat1 wild type and c-myc null cells
  • organism-icon Homo sapiens, Rattus norvegicus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

[Hela cells]: We performed cdr2 knockdown with a pool of 4 cdr2-specific siRNAs to test whether cdr2 may regulate c-myc target genes as cells passage through mitosis.

Publication Title

The onconeural antigen cdr2 is a novel APC/C target that acts in mitosis to regulate c-myc target genes in mammalian tumor cells.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact