The RNA-binding protein FUS is implicated in transcription, alternative splicing of neuronal genes and DNA repair. Mutations in FUS have been linked to human neurodegenerative diseases such as ALS (amyotrophic lateral sclerosis). We genetically disrupted fus in zebrafish (Danio rerio) using the CRISPR-Cas9 system. The fus knockout animals are fertile and did not show any distinctive phenotype. Mutation of fus induces mild changes in gene expression on the transcriptome and proteome level in the adult brain. We observed a significant influence of genetic background on gene expression and 3’UTR usage, which could mask the effects of loss of Fus. Unlike published fus morphants, maternal zygotic fus mutants do not show motoneuronal degeneration and exhibit normal locomotor activity. Overall design: We performed paired-end sequencing (100bp reads) of the polyA+ transcriptome from brains of five individuals with Fus-/- genotype and four with Fus wild type genotype. Note on RNA-Seq replicates: after performing first RNA sequencing on four replicates of Fus-/- and WT (labeled with the prefix "Sample_imb_ketting_2014_13_") we received a notice from Illumina stating a problem with the library preparation kit lot that was used to prepare the libraries. Due to that, we performed RNA sequencing a second time, using the same input RNA, except for the Fus knockout replicate #3, because there was not enough input RNA left. Instead, a different Fus knockout replicate (#1) was sequenced. However, we compared the mapped reads from sequencing run 1 and sequencing run 2 using plotCorrelaction from DeepTools, and the samples are highly correlated (at least 0.97 and 0.95, Spearman and Pearson correlation respectively). Therefore, we considered first ("Sample_imb_ketting_2014_13_") and second sequencing runs as technical replicates.
Characterization of genetic loss-of-function of Fus in zebrafish.
No sample metadata fields
View SamplesGerm plasm, the Balbiani body and nuage are evolutionary conserved structures essential for germ cell specification and maintenance. We describe Tdrd6a as a component of these structures with two distinct molecular functions. First, Tdrd6a facilitates the accumulation of the typical antisense-bias of piRNAs, without having effects on piRNA biogenesis signatures. Second, we show that Tdrd6a is required for Balbiani body and germ plasm integrity, and associates with RNA-binding proteins and germ plasm mRNAs. On the cell-biological level, maternally contributed Tdrd6a strongly impacts germ cell formation, but is dispensable for fertility. Using single-cell RNA-sequencing we demonstrate that Tdrd6a promotes early germ cell development and regulates the stoichiometry of germ plasm mRNAs. We propose that Tdrd6a functions as a scaffold to recruit correct ratios of germ plasm transcripts and to accumulate antisense piRNA complexes in order to ensure both specification and maintenance of germ cells. Overall design: Single cell were sorted directly in Trizolfrom embryos spawned by mz tdrd6a-/- mother and wt mother carrying a kop::egfp-f-nos1-3'UTR transgene. Thereafter single cell trizol extractio was performed followed by RT, IVT and RNA-seq library prep.
Tdrd6a Regulates the Aggregation of Buc into Functional Subcellular Compartments that Drive Germ Cell Specification.
Cell line, Subject
View SamplesDevelopmental checkpoints in stem/progenitor cells are critical to the determination, commitment and differentiation into distinct lineages. Cancer cells often retain expression of lineage-specific checkpoint proteins, but their potential impact in cancer remains elusive. T lymphocytes mature in the thymus following a highly orchestrated developmental process that entails the successive rearrangements and expression of T-cell receptor (TCR) genes. Low affinity recognition of self-peptide/MHC complexes (self-pMHC) presented by thymic epithelial cells by the TCR of CD4+CD8+ (DP) cortical thymocytes transduces positive selection signals that ultimately shape the developing T cell repertoire. DP thymocytes not receiving these signals die by lack of stimulation whereas those that recognize self-pMHC with high affinity undergo TCR-mediated apoptosis and negative selection. In T-cell acute lymphoblastic leukaemia (T-ALL), leukaemic transformation of maturating thymocytes results from the acquisition of multiple genetic and epigenetic alterations in oncogenes and tumour suppressor genes, that disrupt the normal regulatory circuits and drive clonal expansion of differentiation-arrested lymphoblasts. We show here that TCR triggering by negatively-selecting self-pMHC prevented T-ALL development and leukaemia maintenance in mice. Induction of TCR signalling by high affinity self-pMHC or treatment with monoclonal antibodies to the CD3 signalling chain (anti-CD3) caused massive leukaemic cell death and a gene expression program resembling that of thymocyte negative selection. Importantly, anti-CD3 treatment hampered leukaemogenesis in mice transplanted with either mouse or patient-derived T-ALLs. These data provide a rationale for targeted therapy based on anti-CD3 treatment of T-ALL patients and demonstrate that endogenous developmental checkpoint proteins are amenable to therapeutic intervention in cancer cells.
Triggering the TCR Developmental Checkpoint Activates a Therapeutically Targetable Tumor Suppressive Pathway in T-cell Leukemia.
Cell line
View SamplesPlexiform neurofibroma is a major contributor to morbidity in Neurofibromatosis type I (NF1) patients. Macrophages and mast cells infiltrate neurofibroma, and data from mouse models implicate these leukocytes in neurofibroma development. Anti-inflammatory therapy targeting these cell populations has been suggested as a means to prevent neurofibroma development. Here, we compare gene expression in inflamed nerves from NF1 models which invariably form neurofibroma to those with inflammation driven by EGFR overexpression which rarely progresses to neurofibroma. We find that the chemokine Cxcl10 is uniquely up-regulated in NF1 mice that invariably develop neurofibroma. Global deletion of the CXCL10 receptor, Cxcr3, prevented neurofibroma development in these neurofibroma-prone mice. Cxcr3 expression localized to T cells and dendritic cells (DCs) in both inflamed nerves and neurofibromas. These data support a heretofore unappreciated role for T cells/DCs in neurofibroma initiation. Overall design: To identify cell populations associated with Cxcl10 expression, we utilized a single-cell RNA-Seq (scRNA-Seq) data set collected from 2-month Dhh-Cre;Nf1 fl/fl nerve/DRG using the 10x Genomics Chromium platform.
Cxcr3-expressing leukocytes are necessary for neurofibroma formation in mice.
Age, Specimen part, Cell line, Subject
View SamplesIn the ovarian follicle, maturation of the oocyte increases in the presence of somatic cells called cumulus cells (CCs). These cells form a direct barrier between the oocyte and external environment. Thanks to bidirectional communication, they have a direct impact on the oocyte, its quality and development potential. Understanding the genetic profile of CCs appears to be important in elucidating the physiology of oocytes. In this work, CCs were subjected to in vitro long-term culture. RNA was collected after 1, 7, 15 and 30 days of culture. Expression microarrays were used for analysis, which allowed to identify groups of genes characteristic for particular cellular processes.
Human Cumulus Cells in Long-Term In Vitro Culture Reflect Differential Expression Profile of Genes Responsible for Planned Cell Death and Aging-A Study of New Molecular Markers.
Sex, Specimen part
View SamplesNeurofibromatosis Type 1 (NF1) patients develop benign neurofibromas and malignant peripheral nerve sheath tumors (MPNST). These incurable peripheral nerve tumors result from loss of NF1 tumor suppressor gene function, causing hyperactive Ras signaling. Activated Ras controls numerous downstream effectors, but specific pathways mediating effects of hyperactive Ras in NF1 tumors are unknown. Cross-species transcriptome analyses of mouse and human neurofibromas and MPNSTs identified global negative feedback of genes that regulate Ras-Raf- MEK- extracellular signal-regulated protein kinase (ERK) signaling in both species. Nonetheless, activation of ERK was sustained in mouse and human neurofibromas and MPNST. PD0325901, a highly selective pharmacological inhibitor of MEK, was used to test whether sustained Ras-Raf-MEK-ERK signaling contributes to neurofibroma growth in the Nf1fl/fl;Dhh-cre mouse model or in NF1 patient MPNST cell xenografts. PD0325901 treatment reduced aberrantly proliferating cells in neurofibroma and MPNST, prolonged survival of mice implanted with human MPNST cells, and shrank neurofibromas in >80% of mice tested. PD0325901 also caused effects on tumor vasculature. Our data demonstrate that deregulated Ras/ERK signaling is critical for the growth of NF1 peripheral nerve tumors and provide strong rationale for testing MEK inhibitors in NF1 clinical trials.
MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors.
Specimen part
View SamplesThe aim of this work was to access the early immune response triggered by R. microplus larvae attachment in previously selected resistant and susceptible animals in a bovine F2 population derived from Gyr (Bos indicus) Holstein (Bos taurus) crosses.
Microarray analysis of tick-infested skin in resistant and susceptible cattle confirms the role of inflammatory pathways in immune activation and larval rejection.
Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response.
Age, Specimen part, Time
View SamplesMicroarray analyses of sweet orange epicotyls transiently transfected with the pthA2, pthA4 or pthC1 gene, relative to epicotyls transfected with the uid gene (GUS)
Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response.
Age, Specimen part, Time
View SamplesMicroarray analyses of sweet orange leaves infiltrated with Xc in the presence or absence of Ch, or Ch alone
Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response.
Specimen part, Time
View Samples