Plant cell surface receptors sense microbial pathogens by recognizing microbial structures called pathogen or microbe-associated molecular patterns (PAMPs/MAMPs). There are two major types of plant pattern recognition receptors: 1. Leucine-rich repeat receptor proteins (LRR-RP) and LRR receptor kinases (LRR-RK) and 2. Plant receptor proteins and receptor kinases carrying ectopic lysin motifs (LysM-RP and LysM-RK). In this study, Arabidopsis thaliana responses to three different MAMPs, flg22, nlp20, chitin (C6), via their corresponding receptor types, FLS2 (LRR-RK), RLP23 (LRR-RP), CERK1 (LysM-RK) were compared. Our RNA-seq results indicate that a core set of defense-related genes can be activated through perception of different MAMPs. However, there are also notable differences in the transcriptional changes in response to the various elicitors; flg22 causes broader transcriptome changes than nlp20 and C6, and C6 does not cause late transcriptome changes. Overall design: Arabodopsis seedings were treated with water, flg22, nlp20, or C6 and collected after 1h, 6h and 24h. One sample before treatment was also collected. 4 biological repecates were performed.
Comparing Arabidopsis receptor kinase and receptor protein-mediated immune signaling reveals BIK1-dependent differences.
Subject, Time
View SamplesMammalian interphase chromosomes interact with the nuclear lamina (NL) through hundreds of large Lamina Associated Domains (LADs). We report a method to map NL contacts genome-wide in single human cells. Analysis of ~400 maps reveals a core architecture of gene-poor LADs that contact the NL with high cell-to-cell consistency, interspersed by LADs with more variable NL interactions. The variable contacts are more sensitive to a change in genome ploidy than the consistent contacts. Single-cell maps indicate that NL contacts involve multivalent interactions over hundreds of kilobases. Moreover, we observe extensive intra-chromosomal coordination of NL contacts, even over tens of megabases. Such coordinated loci exhibit preferential interactions as detected by Hi-C. Finally, single-cell gene expression and chromatin accessibility analysis shows that loci with consistent NL contacts are expressed at lower levels and are more consistently inaccessible than loci with lower contact frequencies. These results highlight fundamental principles of single cell chromatin organization. Overall design: In this dataset, single-cell mRNA sequencing results from 96 single KBM7 cells have been deposited
Genome-wide maps of nuclear lamina interactions in single human cells.
No sample metadata fields
View SamplesHuman T-lymphotropic virus type 1 (HTLV-1) is associated with the development of Adult T-cell Leukemia, an aggressive CD4+ T-cells malignancy. Here, we have developed a new procedure to infect humanized mice with proviruses displaying specific mutations, such as one leading to the loss of the PDZ domain-binding motif (PBM) of Tax. In order to specifically analyze the in vivo role of the PBM of Tax, a comparative study of infected hu-mice was performed. We used next-generation sequencing to perform genome-wide transcriptomic analysis of T-cells infected with wild-type HTLV-1 virus or with virus bearing a mutated form of Tax lacking the PBM. Our results suggest that Tax PBM might be involved in the regulation of genes implicated in proliferation, apoptosis and cytoskeleton organization. Overall design: mRNA profiles of T-cells obtained from hu-Mice infected with wild-type or Tax-PBM HTLV-1 were generated by deep-sequencing in triplicates using Illumina's Hiseq3000 platform.
PDZ domain-binding motif of Tax sustains T-cell proliferation in HTLV-1-infected humanized mice.
Specimen part, Subject
View SamplesStabilin-1/CLEVER-1 is a multidomain protein present in lymphatic and vascular endothelial cells and in M2 immunosuppressive macrophages. Stabilin-1 functions in scavenging, endocytosis and leukocyte adhesion to and transmigration through the endothelial cells. We have analyzed the putative functions of Stabilin-1 in blood monocytes and found that in healthy individuals 60-80% of both CD14+CD16- and CD14+C16+ monocytes, but not CD14dimCD16+ monocytes, expressed Stabilin-1 on the surface. Microarray and RNAseq analysis was performed to get more insight into the effect of Stabilin-1 expression on human monocytes transcriptome. Overall design: The transcriptome of human monocytes transfected with Stabilin-1 siRNA was compared to that of control siRNA transfected monocytes
Monocyte Stabilin-1 Suppresses the Activation of Th1 Lymphocytes.
No sample metadata fields
View SamplesVascular adhesion protein-1 (VAP-1) is an endothelial cell-surface protein. It is also an enzyme posessing semicarbazide-sensitive amine oxidase activity (EC.1.4.3.6). VAP-1 is involved in leukocyte traffic. To study the role of VAP-1 in tumor immunity, we compared gene expression profiles in melanomas growing in VAP-1 -/- mice and their wid-type littermates.
Vascular adhesion protein-1 enhances tumor growth by supporting recruitment of Gr-1+CD11b+ myeloid cells into tumors.
No sample metadata fields
View SamplesHMG-CoA reductase inhibitors, statins, have beneficial vascular effects beyond their cholesterol-lowering action. These pleiotropic effects include an anti-inflammatory effect on macrophages. Since macrophages play a central role in atherogenesis, we further characterized the effects on peripheral blood monocyte-macrophages (HPBM). Using Affymetrix gene chip analysis of simvastatin-treated HPBM, we found that simvastatin treatment lead to the downregulation of the expression of many proinflammatory genes including several chemokines (e.g. MCP-1, MIP-1 alpha and , RANTES, several other CC and CXC chemokines, IL-2 receptor-, and leukemia inhibitory factor), members of the tumor necrosis factor family (e.g. lymphotoxin beta and TRAIL), VCAM-1, ICAM-3, and tissue factor (TF). Simvastatin also modulated the expression of several transcription factors essential for the inflammatory response: simvastatin downregulated the expression of NF-kappaB relA/p65 subunit and ets-1 transcription factor, and upregulated the expression of a novel atheroprotective transcription factor, Kruppel-like factor 2 (KLF-2). The effects of simvastatin on KLF-2 and its target genes were dependent on protein prenylation, since inhibitors of protein prenylation had a similar inhibitory effect in THP-1 derived macrophages. Additionally, by lentiviral overexpression KLF-2 we showed that the effect of simvastatin on MCP-1 and TF were dependent on KLF-2. We concluded that simvastatin had a strong anti-inflammatory effect on macrophages, which includes upregulation of the atheroprotective transcription factor KLF-2. These findings further explain the beneficial pleiotropic effects of statins on cardiovascular diseases.
Simvastatin has an anti-inflammatory effect on macrophages via upregulation of an atheroprotective transcription factor, Kruppel-like factor 2.
No sample metadata fields
View SamplesStabilin-1/CLEVER-1 is a multidomain protein present in lymphatic and vascular endothelial cells and in M2 immunosuppressive macrophages. Stabilin-1 functions in scavenging, endocytosis and leukocyte adhesion to and transmigration through the endothelial cells. Overall design: The transcriptome of liver tissue in 2wk old and E17.5 Stab1 knock-out mice was compared to that of corresponding wild type mice
Enhanced Antibody Production in Clever-1/Stabilin-1-Deficient Mice.
Age, Specimen part, Subject
View SamplesThe neuronal ceroid lipofuscinoses (NCL) are a group of childhood inherited neurodegenerative disorders characterized by blindness, early dementia and pronounced cortical atrophy. The similar pathological and clinical profiles of different forms of NCL suggest that common disease mechanisms may be involved. Here, we have performed quantitative gene expression profiling of cortex from targeted knock out mice produced for Cln1 and Cln5 to explore NCL-associated molecular pathways. Combined microarray datasets from both mouse models exposed a common affected pathway: genes regulating cytoskeletal dynamics and neuronal growth cone stabilization display similar aberrations. We analyzed locus specific gene expression and showed regional clustering of Cln1 and three major genes of this pathway, further supporting a close functional relationship between the corresponding gene products, Cap1, Ptprf and Ptp4a2. The evidence from the gene expression data was substantiated by immunohistochemical staining data of Cln1-/- and Cln5-/- cortical neurons. These primary neurons displayed abnormalities in beta-tubulin and actin as well as abnormal intracellular distribution of growth cone associated proteins GAP-43, synapsin and Rab3. Our data provide the first evidence for a common molecular pathogenesis behind neuronal degeneration in CLN1 and CLN5. Since CLN1 and CLN5 code for proteins with distinct functional roles these data may have implications for other forms of NCL.
Brain gene expression profiles of Cln1 and Cln5 deficient mice unravels common molecular pathways underlying neuronal degeneration in NCL diseases.
Sex, Age, Specimen part, Disease
View SamplesThe distinction between lymphatic and blood vessels is biologically fundamental. Two immortalized cell lines, which have been widely used as models for endothelial cells of blood vascular origin, are the human microvascular endothelial cell line-1 (HMEC-1) and the telomerase-immortalized microvascular endothelial cell line (TIME). However, analysis of protein expression by flow cytometry revealed expression of lymphatic markers on these cell lines. Furthermore, functional in vitro leukocyte transmigration assays demonstrated deficiencies in several steps of the leukocyte extravasation cascade. Hence we performed this microarray analysis of the gene expression in HMEC-1 and TIME. We then compare the expression profiles to those of published blood- and lymphatic endothelial cells.
Plasticity of blood- and lymphatic endothelial cells and marker identification.
Cell line
View SamplesBackground: Severe septic syndromes deeply impair innate and adaptive immunity. While neutrophils represent the first line of defense against infection, little is known about their phenotype and functions during sepsis-induced immunosuppression. The objective of this study was thus to perform for the first time a global evaluation of neutrophil alterations in immunosuppressed septic patients based on phenotypic, functional and transcriptomic studies. In addition, the potential association of these parameters and deleterious outcomes was assessed.
Marked alterations of neutrophil functions during sepsis-induced immunosuppression.
Disease
View Samples