refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1634 results
Sort by

Filters

Technology

Platform

accession-icon GSE6880
Heart in Diabetes
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

8 week old rats injected with streptozotocin or buffer alone at age of 8 weeks, heart obtained at 12 weeks (thus animals were diabetic for 4 weeks). Left vent of heart.

Publication Title

Oxidoreductase, morphogenesis, extracellular matrix, and calcium ion-binding gene expression in streptozotocin-induced diabetic rat heart.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15900
Diabetic lung
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

Effect of type 1 diabetes (induced by streptozotocin 60 mg/kg) on lung gene expression. Wistar rats, male. At age 8 weeks control rats got IP buffer, diabetic rats got streptozotocin. At age 12 weeks animals were anesthetized and lungs removed. RNA was extracted with Trizol, and gene expression array analysis was performed using Affymetrix RAE 230A microarrays according to the directions from the manufacturer. Arrays were scanned using a Hewlett Packard Gene Array scanner, and analyzed with Affymetrix MAS 5.0 software. Expression levels reported are the output from the MAS software.

Publication Title

Alterations in lung gene expression in streptozotocin-induced diabetic rats.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE12282
Normal rat diaphragm vs sternohyoid
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

Normal young adult Sprague Dawley rats (male)

Publication Title

Differential expression of lipid and carbohydrate metabolism genes in upper airway versus diaphragm muscle.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6943
Normal Heart vs Normal Diaphragm
  • organism-icon Rattus norvegicus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

Comparison of gene expression of heart (left vent) and diaphragm of normal Sprague Dawley rats, young adult

Publication Title

Contrast between cardiac left ventricle and diaphragm muscle in expression of genes involved in carbohydrate and lipid metabolism.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE39557
Expression data from genetically engineered mouse models (GEMMs)
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

3 Cell lines from Apc, p53 (AP) GEMMs were compared to 12 cell lines from Apc, Kras, p53 (AKP) GEMMs.

Publication Title

Development of a colon cancer GEMM-derived orthotopic transplant model for drug discovery and validation.

Sample Metadata Fields

Sex, Cell line

View Samples
accession-icon GSE60499
Expression data from PKM1 or PKM2 expressing mouse embryonic fibroblasts.
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We profiled global gene expression for two separate lines of mouse embryonic fibroblasts and find that deletion of PKM2 and expression of PKM1 does not alter global gene expression profiles.

Publication Title

Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE112770
Human bone marrow-derived myeloid dendritic cells show an immature transcriptional and functional profile compared to their peripheral blood counterparts and separate from Slan+ non-classical monocytes
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

The human bone marrow (BM) gives rise to all distinct blood cell lineages, including CD1c+ and CD141+ myeloid dendritic cells (DC) and monocytes. These cell subsets are also present in peripheral blood (PB) and lymphoid tissues. However, the difference between the BM and PB compartment in terms of differentiation state and immunological role of DC is not yet known. The BM may represent both a site for development as well as a possible effector site and so far, little is known in this light with respect to different DC subsets. Using genome-wide transcriptional profiling we found clear differences between the BM and PB compartment and a location-dependent clustering for CD1c+ and CD141+ was demonstrated. DC subsets from BM clustered together and separate from the corresponding subsets from PB, which similarly formed a cluster. In BM, a common proliferating and immature differentiating state was observed for the two DC subsets, whereas DC from the PB showed a more immune-activated mature profile. In contrast, BM-derived slan+ non-classical monocytes were closely related to their PB counterparts and not to DC subsets, implying a homogenous prolife irrespective of anatomical localization. Additional functional tests confirmed these transcriptional findings. DC-like functions were prominently exhibited by PB DC. They surpassed BM DC in maturation capacity, cytokine production and induction of CD4+ and CD8+ T cell proliferation. This first study on myeloid DC in healthy human BM offers new information on steady-state DC biology and could potentially serve as a starting point for further research on these immune cells in healthy conditions as well as in diseases.

Publication Title

Human Bone Marrow-Derived Myeloid Dendritic Cells Show an Immature Transcriptional and Functional Profile Compared to Their Peripheral Blood Counterparts and Separate from Slan+ Non-Classical Monocytes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE98694
Transcriptional profiling reveals functional dichotomy between human slan+ non-classical monocytes and myeloid dendritic cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Abstract: Human 6-sulfo LacNac (slan)+ cells have been subject to a paradigm debate. They have previously been classified as a distinct dendritic cell (DC) subset. However, evidence has emerged that they may be more related to monocytes than to DC. To gain deeper insight into the functional specialization of slan+ cells, we have compared them with both conventional myeloid DC subsets (CD1c+ and CD141+) in human peripheral blood. Using genome-wide transcriptional profiling as well as extensive functional tests, we clearly show that slan+ cells form a distinct, non-DC-like, population. They cluster away from both DC subsets and their gene expression profile evidently suggests involvement in distinct inflammatory processes. An extensive comparison with existing genomic data sets also strongly confirmed the relationship of slan+ with the monocytic compartment rather than with DC. From a functional perspective, their ability to induce CD4+ and CD8+ T cell proliferation is relatively low. Combined with the finding that antigen presentation by MHC class II is at the top of under-represented pathways in slan+ cells, this points to a minimal role in directing adaptive T cell immunity. Rather, the higher expression of complement receptors on their cell surface, together with their high secretion of IL-1 and IL-6, imply a specific role in innate inflammatory processes, which is consistent with their recent identification as non-classical monocytes. This study extends our knowledge on DC/monocyte subset biology under steady state conditions and contributes to our understanding of their role in immune-mediated diseases and their potential use in immunotherapeutic strategies.

Publication Title

Transcriptional profiling reveals functional dichotomy between human slan<sup>+</sup> non-classical monocytes and myeloid dendritic cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE54676
Transcription factor ATAF1 integrates carbon starvation responses with trehalose metabolism
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Global transcriptome patterns were obtained from ATAF1-IOE seedlings at 1 h, 2 h and 5 h after estradiol induction or mock treatment, and from mature ATAF1-IOE leaves at 5 h after estradiol induction or mock treatment.

Publication Title

Transcription Factor Arabidopsis Activating Factor1 Integrates Carbon Starvation Responses with Trehalose Metabolism.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE30129
AIRE-deficient CD8+CD28low regulatory T lymphocytes fail to control experimental colitis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Mutations in the gene encoding the transcription factor AutoImmune REgulator (AIRE) are responsible for the Autoimmune PolyEndocrinopathy Candidiasis Ecodermal Dystrophy syndrome. AIRE directs expression of tissue restricted antigens in the thymic medulla and in lymph node stromal cells and thereby substantially contributes to induction of immunological tolerance to self-antigens. Data from experimental mouse models showed that AIRE-deficiency leads to impaired deletion of autospecific T cell precursors. However, a potential role for AIRE in the function of regulatory T cell populations, which are known to play a central role in prevention of immunopathology, has remained elusive. Regulatory T cells of CD8+CD28low phenotype efficiently control immune responses in experimental autoimmune and colitis models in mice. We here show that CD8+CD28low Treg from AIRE-deficient mice are transcriptionally and phenotypically normal, exert efficient suppression of in vitro immune responses, but completely fail to prevent experimental colitis in vivo. Our data therefore demonstrate that AIRE plays an important role in the in vivo function of a naturally occurring regulatory T cell population.

Publication Title

Autoimmune regulator (AIRE)-deficient CD8+CD28low regulatory T lymphocytes fail to control experimental colitis.

Sample Metadata Fields

Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact