Wilms tumor (nephroblastoma) is a pediatric kidney tumor that arises from renal progenitor cells. Since the blastemal type is associated with adverse prognosis, we characterized such Wilms tumors by exome and transcriptome analysis. We detected novel, recurrent somatic mutations affecting the SIX1/2 SALL1 pathway implicated in kidney development, the DROSHA/DGCR8 microprocessor genes as well as alterations in MYCN and TP53, the latter being strongly associated with dismal outcome. The DROSHA mutations impair the RNase III domains, while DGCR8 exhibits stereotypic E518K mutations in the RNA binding domain - both may skew miRNA representation. SIX1 and SIX2 mutations affect a single hotspot (Q177R) in the homeodomain indicative of a dominant effect. In larger cohorts, these mutations cluster in blastemal and chemotherapy-induced regressive tumors that likely derive from blastemal cells and these are characterized by generally higher SIX1/2 expression. These findings broaden the spectrum of human cancer genes and may open new avenues for stratification and therapeutic leads for Wilms tumors.
Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors.
Sex
View SamplesA prevalent hypothesis for the cell-to-cell coordination of the phenomena of early development is that a defined mixture of different mRNA species at specific abundances in each cell determines fate and behavior. With this dataset we explore this hypothesis by quantifying the abundance of every mRNA species in every individual cell of the early C. elegans embryo, for which the exact life history and fate is precisely documented. Overall design: Embryos of the 1-, 2-, 4-, 8- and 16-cell stage were dissected into complete sets of single cells, and each cell from each set was sequenced individually using SMARTer technology. 5-9 replicates were generated for each stage. Most cell identities were unknown upon sequencing, but were deduced from by their transcriptomes post hoc.
A Transcriptional Lineage of the Early C. elegans Embryo.
Specimen part, Subject
View SamplesRecognition of microbial patterns and host derived damage signals by host pattern recognition receptors is a key step in immune activation in multicellular eukaryotes. Here we show how mutations in ethylene signaling and the coreceptor bak1 affect host immune responses triggered by elicitors.
Layered pattern receptor signaling via ethylene and endogenous elicitor peptides during Arabidopsis immunity to bacterial infection.
Treatment, Time
View SamplesAtopic dermatitis (AD) is a common inflammatory skin disease with a T(H)2 and T22 immune polarity. Despite recent data showing a genetic predisposition to epidermal barrier defects in some patients, a fundamental debate still exists regarding the role of barrier abnormalities versus immune responses in initiating the disease. An extensive study of nonlesional AD (ANL) skin is necessary to explore whether there is an intrinsic predisposition to barrier abnormalities, background immune activation, or both in patients with AD. We sought to characterize ANL skin by determining whether epidermal differentiation and immune abnormalities that characterize lesional AD (AL) skin are also reflected in ANL skin. We performed genomic and histologic profiling of both ANL and AL skin lesions (n = 12 each) compared with normal human skin (n = 10). We found that ANL skin is clearly distinct from normal skin with respect to terminal differentiation and some immune abnormalities and that it has a cutaneous expansion of T cells. We also showed that ANL skin has a variable immune phenotype, which is largely determined by disease extent and severity. Whereas broad terminal differentiation abnormalities were largely similar between involved and uninvolved AD skin, perhaps accounting for the background skin phenotype, increased expression of immune-related genes was among the most obvious differences between AL and ANL skin, potentially reflecting the clinical disease phenotype. Our study implies that systemic immune activation might play a role in alteration of the normal epidermal phenotype, as suggested by the high correlation in expression of immune genes in ANL skin with the disease severity index.
Nonlesional atopic dermatitis skin is characterized by broad terminal differentiation defects and variable immune abnormalities.
Specimen part, Subject
View SamplesBackground: Atopic dermatitis (AD) is a common inflammatory skin disease exhibiting a predominantly Th2/T22 immune activation and a defective epidermal barrier. Narrow-band UVB (NB-UVB) is considered an efficient treatment for moderate to severe AD. In psoriasis, NB-UVB has been found to suppress the Th1/Th17 immune polarization with subsequent reversal of epidermal hyperplasia. The immunomodulatory effects of this treatment are largely unknown in AD. Our study evaluates the effects of NB-UVB on immune and barrier abnormalities in AD, aiming to establish reversibility of disease and biomarkers of therapeutic response. Methods: 12 moderate-to-severe chronic AD patients received NB-UVB phototherapy 3 times weekly for up to 12 weeks. Lesional and non-lesional skin biopsies were obtained before and after treatment and evaluated by gene-expression and immunohistochemistry studies. Results: All patients had at least a 50% reduction in SCORing of AD (SCORAD) index with NB-UVB phototherapy. The Th2, T22, and Th1 immune pathways were suppressed and measures of epidermal hyperplasia and differentiation also normalized after phototherapy. The reversal of disease activity was associated with elimination of inflammatory leukocytes, Th2/T22-associated cytokines and chemokines, and normalized expression of barrier proteins. Conclusions: Our study shows reversal of both the epidermal defects and underlying immune activation in AD. By determining the correlation of variables with therapeutic response, we have defined a set of biomarkers of disease response that associate resolved Th2 and T22 inflammation with reversal of barrier pathology. This data supports the inside-out hypothesis of AD, suggesting that it is a disease primarily driven by an immune stimulus.
Reversal of atopic dermatitis with narrow-band UVB phototherapy and biomarkers for therapeutic response.
Specimen part, Treatment, Subject, Time
View SamplesWe generated RNAseq profiles from Small Airway Epithelial Cells (SALE) expressing either KRAS G12V or GFP control. Overall design: SALE stably expressing with KRAS G12V or GFP were harvested two weeks after infection.
Decomposing Oncogenic Transcriptional Signatures to Generate Maps of Divergent Cellular States.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Brain transcriptional and epigenetic associations with autism.
Age, Specimen part, Disease, Disease stage, Subject
View SamplesThe LEF/TCF family of transcription factors are downstream effectors of the WNT signaling pathway, which drives colon tumorigenesis. LEF/TCFs have a DNA sequence-specific HMG box that binds Wnt Response Elements (WREs). The E tail isoforms of TCFs are alternatively spliced to include a second DNA binding domain called the C-clamp. We show that induction of a dominant negative C-clamp version of TCF1 (dnTCF1E) induces a p21-dependent stall in the growth of DLD1 colon cancer cells. Induction of a C-clamp mutant did not induce p21 or stall cell growth. Microarray analysis revealed that induction of p21 by dnTCF1EWT correlated with a decrease in expression of p21 suppressors that act at multiple levels from transcription (SP5, YAP1, RUNX1), to RNA stability (MSI2), and protein stability (CUL4A). We show that the C-clamp is a sequence specific DNA binding domain that can make contacts with 5-RCCG-3 elements upstream or downstream of WREs. The C-clamp-RCCG interaction was critical for TCF1E mediated transcriptional control of p21-connected target gene promoters. Our results indicate that a WNT/p21 circuit is driven by C-clamp target gene selection.
A WNT/p21 circuit directed by the C-clamp, a sequence-specific DNA binding domain in TCFs.
Specimen part
View SamplesAutism is a common neurodevelopmental syndrome. Numerous rare genetic etiologies are reported; most cases are idiopathic. To uncover important gene dysregulation in autism we analyzed carefully selected idiopathic autistic and control cerebellar and BA19 (occipital) brain tissues using high resolution whole genome gene expression and DNA methylation microarrays. No changes in DNA methylation were identified in autistic brain but gene expression abnormalities in two areas of metabolism were apparent: down-regulation of genes of mitochondrial oxidative phosphorylation and of protein translation. We also found associations between specific behavioral domains of autism and specific brain gene expression modules related to myelin/myelination, inflammation/immune response and purinergic signaling. This work highlights two largely unrecognized molecular pathophysiological themes in autism and suggests differing molecular bases for autism behavioral endophenotypes.
Brain transcriptional and epigenetic associations with autism.
Age
View SamplesExposure to ultraviolet (UV) irradiation is the major cause of nonmelanoma skin cancer, the most common form of cancer in the United States. UV irradiation has a variety of effects on the skin associated with carcinogenesis, including DNA damage and effects on signal transduction. The alterations in signaling caused by UV regulate inflammation, cell proliferation, and apoptosis. UV also activates the orphan receptor tyrosine kinase and proto-oncogene Erbb2 (HER2/neu). In this study, we demonstrate that the UV-induced activation of Erbb2 regulates the response of the skin to UV. Inhibition or knockdown of Erbb2 before UV irradiation suppressed cell proliferation, cell survival, and inflammation after UV. In addition, Erbb2 was necessary for the UV-induced expression of numerous proinflammatory genes that are regulated by the transcription factors nuclear factor-kappaB and Comp1, including interleukin-1beta, prostaglandin-endoperoxidase synthase 2 (Cyclooxygenase-2), and multiple chemokines. These results reveal the influence of Erbb2 on the UV response and suggest a role for Erbb2 in UV-induced pathologies such as skin cancer.
Erbb2 regulates inflammation and proliferation in the skin after ultraviolet irradiation.
No sample metadata fields
View Samples