Analysis of the transcriptomes of nearly ripe siliques (18-19 DAP) of the rdo2-1, rdo3 and hub1-2 (rdo4) mutants in comparison with wild-type Ler, using Affymetrix GeneChip Arabidopsis ATH1 Genome Array.
Identification of the Arabidopsis REDUCED DORMANCY 2 gene uncovers a role for the polymerase associated factor 1 complex in seed dormancy.
No sample metadata fields
View SamplesIn rice (Oryza sativa L.), the haplotype at the multigenic SUBMERGENCE 1 (SUB1) locus determines survival of prolonged submergence. SUB1 encodes two or three group VII Ethylene Response Factor (ERF) family transcription factors, SUB1A, SUB1B and SUB1C. A highly submergence-inducible SUB1A allele is present in lines that are submergence tolerant. This gene is the determinant of submergence tolerance. Here, the heterologous ectopic expression of rice SUB1A and SUB1C in Arabidopsis thaliana was employed to assess the transcriptional network mobilized by ectopic expression of SUB1A and SUB1C.
Expression of rice SUB1A and SUB1C transcription factors in Arabidopsis uncovers flowering inhibition as a submergence tolerance mechanism.
Specimen part
View SamplesAnalysis of the transcriptome of dry hda9-1 mutant seeds with those of Col wild-type seeds, using Affymetrix GeneChip Arabidopsis ATH1 Genome Array.
HISTONE DEACETYLASE 9 represses seedling traits in Arabidopsis thaliana dry seeds.
Specimen part
View SamplesWhen grown on solid substrates, different microorganisms often form colonies with very specific morphologies. Whereas the pioneers of microbiology often used colony morphology to discriminate between species and strains, the phenomenon has not received much recent attention. In this study, we use a genome-wide assay in the model yeast Saccharomyces cerevisiae to identify all genes that affect colony morphology. We show that several major signaling cascades, including the MAPK, TORC, SNF1 and RIM101 pathways play a role, indicating that morphological changes are a reaction to changing environments. Other genes that affect colony morphology are involved in protein sorting and epigenetic regulation. Interestingly, the screen reveals only few genes that are likely to play a direct role in establishing colony morphology, one notable exception being FLO11, a gene encoding a cell-surface adhesin that has already been implicated in colony morphology, biofilm formation, and invasive and pseudohyphal growth. Using a series of modified promoters to tune FLO11 expression, we confirm the central role of Flo11 and show that differences in FLO11 expression result in distinct colony morphologies. Together, our results provide a first comprehensive looks at the complex genetic network that underlies the diversity in the morphologies of yeast colonies.
Identification of a complex genetic network underlying Saccharomyces cerevisiae colony morphology.
No sample metadata fields
View SamplesPurpose: Presence of pelvic lymph node metastases is the main prognostic factor in early stage cervical cancer patients, primarily treated with surgery. Aim of this study was to identify cellular tumor pathways associated with pelvic lymph node metastasis in early stage cervical cancer.
Involvement of the TGF-beta and beta-catenin pathways in pelvic lymph node metastasis in early-stage cervical cancer.
Age
View SamplesProliferation of neoplastic plasma cells within the bone marrow leads to reduced oxygen availability. In response to hypoxia, the transcription factor hypoxia-inducible factor-2alpha (HIF-2) is activated and stabilised. We hypothesise that activation of HIF-2 is a central driver of multiple myeloma disease progression, leading to the induction of transcription of genes associated with angiogenesis, osteoclast activation and cell migration. In this study we assessed the affects of HIF-2 overexpression on gene expression in the human myeloma cell line LP-1.
HIF-2α Promotes Dissemination of Plasma Cells in Multiple Myeloma by Regulating CXCL12/CXCR4 and CCR1.
No sample metadata fields
View SamplesMesenchymal stem cells (MSCs) are an essential component of the bone marrow (BM) microenvironment and have shown to support cancer evolution in multiple myeloma (MM). Despite the increasing evidence that MM MSCs differ from their healthy counterparts, little knowledge exists as to whether MSCs independently influence disease outcome. The aim of the present study was to determine the importance of MSCs in disease progression and outcome in MM.
The Pattern of Mesenchymal Stem Cell Expression Is an Independent Marker of Outcome in Multiple Myeloma.
Specimen part, Disease, Subject
View SamplesThis series represents bone marrow aspirates from smoldering multiple myeloma patients
Gene-expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis.
No sample metadata fields
View SamplesExpression levels of the RNA-binding protein Quaking (QKI) are low in monocytes of early, human atherosclerotic lesions, but abundant in macrophages of advanced plaques. Specific depletion of QKI protein impaired monocyte adhesion, migration, differentiation into macrophages, and foam cell formation in vitro and in vivo. RNA-seq and microarray analysis of human monocyte and macrophage transcriptomes, including those of a unique QKI haploinsufficient patient, revealed striking changes in QKI-dependent mRNA levels and splicing of RNA transcripts. Overall design: RNA-seq analysis of primary monocytes and macrophages from a QKI haploinsufficient patient and their (control) sibling.
Quaking promotes monocyte differentiation into pro-atherogenic macrophages by controlling pre-mRNA splicing and gene expression.
No sample metadata fields
View SamplesMultiple myeloma is largely incurable, despite development of therapies that target myeloma cell-intrinsic pathways. Disease relapse is thought to originate from dormant myeloma cells, localized in specialized niches, which resist therapy and re-populate the tumor. However, little is known about the niche, and how it exerts cell-extrinsic control over myeloma cell dormancy and re-activation. In this study we track individual myeloma cells by intravital imaging as they colonize the endosteal niche, enter a dormant state and subsequently become activated to form colonies. We demonstrate that dormancy is a reversible state which is switched on by engagement with bone lining cells or osteoblasts, and switched off by osteoclasts remodeling the endosteal niche. Dormant myeloma cells are resistant to chemotherapy targeting dividing cells. The demonstration that the endosteal niche is pivotal in controlling myeloma cell dormancy highlights the potential for targeting cell-extrinsic mechanisms to overcome cell-intrinsic drug resistance and prevent disease relapse.
Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche.
Specimen part
View Samples