Resveratrol is a naturally occurring compound that profoundly affects energy metabolism and mitochondrial function and serves as a calorie restriction mimetic, at least in animal models of obesity. Here we treated 10 healthy, obese men with placebo and 150 mg/day resveratrol in a randomized double-blind cross-over study for 30 days. Resveratrol supplementation significantly reduced sleeping- and resting metabolic rate. In muscle, resveratrol activated AMPK, increased SIRT1 and PGC-1alpha protein levels, increased citrate synthase activity, and improved muscle mitochondrial respiration on a fatty acid-derived substrate. Furthermore, resveratrol elevated intramyocellular lipid levels, and decreased intrahepatic lipid content, circulating glucose, triglycerides, alanine-aminotransferase, and inflammation markers. Systolic blood pressure dropped and HOMA index improved after resveratrol. In the postprandial state, adipose tissue lipolysis and plasma fatty acid and glycerol decreased. In conclusion, we demonstrate that 30 days of resveratrol supplementation induces profound metabolic changes in obese subjects, mimicking the effects of calorie restriction.
Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans.
Sex, Specimen part
View SamplesBackground: Strategies to improve long term renal allograft survival have been directed to recipient dependent mechanisms of renal allograft injury. In contrast, no such efforts have been made to optimize organ quality in the donor. In order to get insight into the deleterious gene pathways expressed at different time points during deceased kidney transplantation, transcriptomics was performed on kidney biopsies from a large cohort of deceased kidney transplants.
Hypoxia and Complement-and-Coagulation Pathways in the Deceased Organ Donor as the Major Target for Intervention to Improve Renal Allograft Outcome.
Specimen part
View SamplesThe spatial organization of chromosomes influences many nuclear processes including gene expression. The cohesin complex shapes the 3D genome by looping together CTCF sites along chromosomes. We show here that chromatin loop size can be increased, and that the duration with which cohesin embraces DNA determines the degree to which loops are enlarged. Cohesin's DNA release factor WAPL restricts the degree of this loop extension and also prevents looping between incorrectly oriented CTCF sites. We reveal that the SCC2/SCC4 complex promotes the extension of chromatin loops and the formation of topologically associated domains (TADs). Our data support the model that cohesin structures chromosomes through the processive enlargement of loops and that TADs reflect polyclonal collections of loops in the making. Finally, we find that whereas cohesin promotes chromosomal looping, it rather limits nuclear compartmentalization. We conclude that the balanced activity of SCC2/SCC4 and WAPL enables cohesin to correctly structure chromosomes. Overall design: RNAseq was performed in control, ?WAPL 3.3, ?WAPL 1.14, ?SCC4 and ?WAPL/?SCC4 cells in triplicate.
The Cohesin Release Factor WAPL Restricts Chromatin Loop Extension.
Cell line, Subject
View SamplesSmall Cell Lung Cancer (SCLC) is the most aggressive type of lung cancer with early metastatic dissemination and invariable development of resistant disease for which no effective treatment is available to date. Mouse models of SCLC based on inactivation of Rb1 and Trp53 developed earlier showed frequent amplifications of two transcription factor genes: Nfib and Mycl. Overexpression of Nfib but not Mycl in SCLC mouse results in an enhanced and altered metastatic profile, and appears to be associated with genomic instability. NFIB promotes tumor heterogeneity with the concomitant expansive growth of poorly differentiated, highly proliferative, and invasive tumor cell populations. Consistent with the mouse data, NFIB expression in high-grade human neuroendocrine carcinomas correlates with advanced stage III/IV disease warranting its further assessment as a potentially valuable progression marker in a clinical setting. Overall design: Genomic DNA from mouse small cell lung tumor samples was analyzed by mate pair sequencing and low coverage sequencing. And RNA from Nfib overexpressing mouse small cell lung cancer cell lines was further analyzed for high quality RNA profiles using Illumina Hiseq2500. This series contains only RNA-seq data.
Transcription Factor NFIB Is a Driver of Small Cell Lung Cancer Progression in Mice and Marks Metastatic Disease in Patients.
Specimen part, Subject
View SamplesThe therapeutic landscape of melanoma is rapidly changing. While targeted inhibitors yield significant responses, their clinical benefit is often limited by the early onset of drug resistance. This motivates the pursuit to establish more durable clinical responses, by developing combinatorial therapies. But while potential new combinatorial targets steadily increase in numbers, they cannot possibly all be tested in patients. Similarly, while genetically engineered mouse melanoma models have great merit, they do not capture the enormous genetic diversity and heterogeneity typical in human melanoma. Furthermore, whereas in vitro studies have many advantages, they lack the presence of micro-environmental factors, which can have a profound impact on tumor progression and therapy response. This prompted us to develop an in vivo model for human melanoma that allows for studying the dynamics of tumor progression and drug response, with concurrent evaluation and optimization of new treatment regimens. Here, we present a collection of patient-derived xenografts (PDX), derived from BRAFV600E, NRASQ61 or BRAFWT/NRASWT melanoma metastases. The BRAFV600E PDX melanomas were acquired both prior to treatment with the BRAF inhibitor vemurafenib and after resistance had occurred, including six matched pairs. We find that PDX resemble their human donors’ melanomas regarding biomarkers, chromosomal aberrations, RNA expression profiles, mutational spectrum and targeted drug resistance patterns. Mutations, previously identified to cause resistance to BRAF inhibitors, are captured in PDX derived from resistant melanomThis melanoma PDX platform represents a comprehensive public resource to study both fundamental and translational aspects of melanoma progression and treatment in a physiologically relevant setting. Overall design: RNA sequencing of 4 melanoma PDX samples to validate the effects of a structural variant on BRAF mRNA in BRAF inhibitor resistant melanoma.
BRAF(V600E) Kinase Domain Duplication Identified in Therapy-Refractory Melanoma Patient-Derived Xenografts.
No sample metadata fields
View SamplesWe studied 498 de-novo adult DLBCL cases, which had been diagnosed between January 2002 and October 2009, as part of the International DLBCL Rituximab-CHOP Consortium Program Study
Addition of rituximab to chemotherapy overcomes the negative prognostic impact of cyclin E expression in diffuse large B-cell lymphoma.
No sample metadata fields
View SamplesAlmost a quarter of pediatric patients with Acute Lymphoblastic Leukemia (ALL) suffer from relapses. The biological mechanisms underlying therapy response and development of relapses have remained unclear. In an attempt to better understand this phenomenon, we have analyzed 41 matched diagnosis relapse pairs of ALL patients using genomewide expression arrays (82 arrays) on purified leukemic cells. In roughly half of the patients very few differences between diagnosis and relapse samples were found (stable group), suggesting that mostly extra-leukemic factors (e.g., drug distribution, drug metabolism, compliance) contributed to the relapse. Therefore, we focused our further analysis on 20 samples with clear differences in gene expression (skewed group), reasoning that these would allow us to better study the biological mechanisms underlying relapsed ALL. After finding the differences between diagnosis and relapse pairs in this group, we identified four major gene clusters corresponding to several pathways associated with changes in cell cycle, DNA replication, recombination and repair, as well as B cell developmental genes. We also identified cancer genes commonly associated with colon carcinomas and ubiquitination to be upregulated in relapsed ALL. Thus, about half of relapses are due to selection or emergence of a clone with deregulated expression of a genes involved in pathways that regulate B cell signaling, development, cell cycle, cellular division and replication.
Genome-wide expression analysis of paired diagnosis-relapse samples in ALL indicates involvement of pathways related to DNA replication, cell cycle and DNA repair, independent of immune phenotype.
Sex, Specimen part, Disease
View SamplesBackground and Purpose—Analyzing genes involved in development and rupture of intracranial aneurysms can enhance knowledge about the pathogenesis of aneurysms, and identify new treatment strategies. We compared gene expression between ruptured and unruptured aneurysms and control intracranial arteries. Methods—We determined expression levels with RNA sequencing. Applying a multivariate negative binomial model, we identified genes that were differentially expressed between 44 aneurysms and 16 control arteries, and between 22 ruptured and 21 unruptured aneurysms. The differential expression of 8 relevant and highly significant genes was validated using digital polymerase chain reaction. Pathway analysis was used to identify enriched pathways. We also analyzed genes with an extreme pattern of differential expression: only expressed in 1 condition without any expression in the other. Results—We found 229 differentially expressed genes in aneurysms versus controls and 1489 in ruptured versus unruptured aneurysms. The differential expression of all 8 genes selected for digital polymerase chain reaction validation was confirmed. Extracellular matrix pathways were enriched in aneurysms versus controls, whereas pathways involved in immune response and the lysosome pathway were enriched in ruptured versus unruptured aneurysms. Immunoglobulin genes were expressed in aneurysms, but showed no expression in controls. Conclusions—For rupture of intracranial aneurysms, we identified the lysosome pathway as a new pathway and found further evidence for the role of the immune response. Our results also point toward a role for immunoglobulins in the pathogenesis of aneurysms. Immune-modifying drugs are, therefore, interesting candidate treatment strategies in the prevention of aneurysm development and rupture. Overall design: RNA sequencing of 44 intracranial aneurysm samples (including 21 unruptured, 22 ruptured and 1 undetermined) and 16 control samples of the intracranial cortical artery
RNA Sequencing Analysis of Intracranial Aneurysm Walls Reveals Involvement of Lysosomes and Immunoglobulins in Rupture.
Sex, Age, Subject
View SamplesColon cancer is a major cause of cancer deaths in Western countries and is associated with diets high in red meat. Heme, the iron-porphyrin pigment of red meat, induces cytotoxicity of gut contents which injures surface cells leading to compensatory hyperproliferation of crypt cells. This hyperproliferation results in epithelial hyperplasia which increases the risk of colon cancer. In humans, a high red-meat diet increases Bacteroides spp in feces. Therefore, we simultaneously investigated the effects of dietary heme on colonic microbiota and on the host mucosa of mice. Whole genome microarrays showed that heme injured the colonic surface epithelium and induced hyperproliferation by changing the surface to crypt signaling. Using 16S rRNA phylogenetic microarrays, we investigated whether bacteria play a role in this changed signaling. Heme increased Bacteroidetes and decreased Firmicutes in colonic contents. This shift was most likely caused by a selective susceptibility of Gram-positive bacteria to heme cytotoxic fecal water, which is not observed for Gram-negative bacteria, allowing expansion of the Gram-negative community. The increased amount of Gram-negative bacteria most probably increased LPS exposure to colonocytes, however, there is no appreciable immune response detected in the heme-fed mice. There was no functional change in the sensing of the bacteria by the mucosa, as changes in inflammation pathways and Toll- like receptor signaling were not detected. This unaltered host-microbe cross-talk indicates that the changes in microbiota did not play a causal role in the observed hyperproliferation and hyperplasia.
Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host-microbe cross-talk.
Sex, Age, Specimen part
View SamplesPreviously, we showed that dietary heme injured the colonic surface epithelium and induced hyperproliferation by changing the surface to crypt signaling. In this study we investigated whether bacteria play a role in this changed signaling. Dietary heme increased the Bacteroidetes and decreased the Firmicutes in colonic content. This shift was caused by a selective susceptibility of Gram-positive bacteria to the heme cytotoxic fecal waters, which is not observed for Gram-negative bacteria allowing expansion of the Gram-negative community. The increased amount of Gram-negative bacteria increased LPS exposure to colonocytes, however, there is no appreciable immune response detected in the heme-fed mice. There were no signs of sensing of the bacteria by the mucosa, as changes in TLR signaling were not present. This lack of microbe-host cross talk indicated that the changes in microbiota do not play a causal role in the heme-induced hyperproliferation.
Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host-microbe cross-talk.
Sex, Age, Specimen part, Treatment
View Samples