In acute promyelocytic leukemia (APL), differentiation therapy with all-trans retinoic acid (ATRA)
Chemokine induction by all-trans retinoic acid and arsenic trioxide in acute promyelocytic leukemia: triggering the differentiation syndrome.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The male germ cell gene regulator CTCFL is functionally different from CTCF and binds CTCF-like consensus sites in a nucleosome composition-dependent manner.
Specimen part
View SamplesThe effect of CTCFL mutation on the transcriptional program in testes
The male germ cell gene regulator CTCFL is functionally different from CTCF and binds CTCF-like consensus sites in a nucleosome composition-dependent manner.
Specimen part
View SamplesCTCFL binding to DNA and the effect of CTCFL expression in ES cells
The male germ cell gene regulator CTCFL is functionally different from CTCF and binds CTCF-like consensus sites in a nucleosome composition-dependent manner.
Specimen part
View SamplesIn MLL-rearranged (MLLr) leukemias the N terminal part of the MLL gene can be fused to over 60 different partner genes. Here, we investigate the genome wide binding of the MLL-AF9 and MLL-AF4 fusion proteins and their epigenetic signatures in order to define a core set of MLLr targets. We uncover both common as well as specific MLL-AF9 and MLL-AF4 target genes, which are all marked by H3K79me2, H3K27ac, and H3K4me3. Apart from promoter binding, we also identify MLL-AF9 and MLL-AF4 binding at specific subsets of non overlapping active distal regulatory elements. Despite this differential enhancer binding MLL-AF9 and MLL-AF4 still share a common gene program, which represents part of the RUNX1 gene program and constitutes of CD34+ and monocyte specific genes. Comparing these datasets revealed several zinc finger transcription factors as potential MLL-AF9 co-regulators. Together these results suggest that MLL-fusions collaborate with specific subsets of TFs to aberrantly regulate the RUNX1 gene program in 11q23 AMLs. Overall design: Genome-wide (ChIP-seq) binding of MLL, AF9, AF4, H3K4me3, H3K27ac, H3K79me2 and RUNX1 in THP-1 and MV4-11 AML cell lines. Expression Profiling (RNA-seq) of THP-1 and MV4-11 cell lines, as well as 5 MLL-AF9 positive patient blasts.
MLL-AF9 and MLL-AF4 oncofusion proteins bind a distinct enhancer repertoire and target the RUNX1 program in 11q23 acute myeloid leukemia.
No sample metadata fields
View SamplesCD141+DNGR-1+ cDC1 have a dual origin. Both MLP and CMP can differentiate in CD141+DNGR-1+ cDC1s.
Dendritic Cell Lineage Potential in Human Early Hematopoietic Progenitors.
Specimen part
View SamplesMedium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) catalyzes crucial steps in mitochondrial fatty acid oxidation, a process that is of key relevance for maintenance of energy homeostasis, especially during high metabolic demand. To gain insight into the metabolic consequences of MCAD deficiency under these conditions, we compared hepatic carbohydrate metabolism in vivo in wild-type and MCAD-/- mice during fasting and during a lipopolysaccharide (LPS)-induced acute phase response (APR). MCAD-/- mice did not become more hypoglycemic on fasting or during the APR than wild-type mice did. Nevertheless, microarray analyses revealed increased hepatic peroxisome proliferator-activated receptor gamma coactivator-1a (Pgc-1a) and decreased peroxisome proliferator-activated receptor alpha (Ppar a) and pyruvate dehydrogenase kinase 4 (Pdk4) expression in MCAD-/- mice in both conditions,suggesting altered control of hepatic glucose metabolism. Quantitative flux measurements revealed that the de novo synthesis of glucose-6-phosphate (G6P) was not affected on fasting in MCAD-/- mice. During the APR, however, this flux was significantly decreased (-20%) in MCAD-/- mice compared with wild-type mice. Remarkably, newly formed G6P was preferentially directed toward glycogen in MCAD-/- mice under both conditions. Together with diminished de novo synthesis of G6P, this led to a decreased hepatic glucose output during the APR in MCAD-/- mice; de novo synthesis of G6P and hepatic glucose output were maintained in wild-type mice under both conditions. APR-associated hypoglycemia, which was observed in wild-type mice as well as MCAD-/- mice, was mainly due to enhanced peripheral glucose uptake. Conclusion: Our data demonstrate that MCAD deficiency in mice leads to specific changes in hepatic carbohydrate management on exposure to metabolic stress. This deficiency, however, does not lead to reduced de novo synthesis of G6P during fasting alone, which may be due to the existence of compensatory mechanisms or limited rate control of MCAD in murine mitochondrial fatty acid oxidation.
Disturbed hepatic carbohydrate management during high metabolic demand in medium-chain acyl-CoA dehydrogenase (MCAD)-deficient mice.
Sex, Specimen part, Treatment
View SamplesSequencing libraries were generated from total RNA samples following the mRNAseq protocol for the generation of single end (16-36 hpf, 5 day larvae, adult head and adult tail) or paired end (24 hpf) libraries (Illumina). Single end reads of 36 nucleotides and paired end reads (2 x 76 nucleotides) were obtained with a GAIIx (Illumina). Gene expression at the different stages/tissu was assessed by cufflinks and HTseq. Overall design: RNAseq on 5 differents samples: 24hpf embryos, pool of 16 hour to 36 hour embryos, 5 days old larvea, adult head and adult tail
Genome-wide, whole mount in situ analysis of transcriptional regulators in zebrafish embryos.
No sample metadata fields
View SamplesTo gain more insight into initiation and regulation of T cell receptor (TCR) gene rearrangement during human T cell development, we analyzed TCR gene rearrangements by quantitative PCR analysis in nine consecutive T-cell developmental stages, including CD34+ lin- cord blood cells as a reference. The same stages were used for gene expression profiling using DNA microarrays.
New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling.
Specimen part
View SamplesT cells develop from progenitors that migrate from the bone marrow into the thymus. Thymocytes are subdivided roughly as being double negative (DN), double positive (DP), or single positive (SP), based on the expression of the CD4 and CD8 coreceptors. The DN stage is heterogeneous and can be subdivided into four distinct subsets in mice based on the expression of CD44 and CD25. In human, three distinct DN stages can be recognized: a CD34+CD38CD1a stage that represents the most immature thymic subset and the consecutive CD34+CD38+CD1a and CD34+CD38+CD1a+ stages. Human DN thymocytes mature via an immature single positive (ISP CD4+) and a DP stage into CD4+ or CD8+ SP T cells that express functional T cell receptors (TCR) and that exit the thymus. In this study, gene expression was measured in each of these nine stages.
New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling.
No sample metadata fields
View Samples