refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1622 results
Sort by

Filters

Technology

Platform

accession-icon SRP068739
Plasticity between Epithelial and Mesenchymal States Unlinks EMT from Metastasis-Enhancing Stem Cell Capacity
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconNextSeq 500, Illumina HiSeq 2500

Description

In this study we studied the presence of tumor cells that underwent epithelial-to-mesenchymal transition within polyoma middle T antigen (PyMT) breast tumors. For this we dissociated tumors and isolated Ecad positive tumor cells by FACS sorting. We confirmed that PyMT tumors contain a small set of tumor cells that have undergone EMT in the primary tumor and that E-cadherin can be used as a marker on single cell level for mesenchymal status in this model. Overall design: (i) We isolated primary tumors from mice, dissociated the tumors and FACS-sorted for single Ecad positive tumor cells, after this we performed single cell sequencing of the cells. (ii) We isolated CTCs and solid tumor cells from mice, dissociated the tumors and FACS-sorted for single Ecad positive and negative cells, after this we performed single cell sequencing of the cells.

Publication Title

Plasticity between Epithelial and Mesenchymal States Unlinks EMT from Metastasis-Enhancing Stem Cell Capacity.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE6551
Expression data from intracranial arteries and intracranial aneurysms
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression information is useful in prioritizing candidate genes in linkage intervals. The data can also identify pathways involved in the pathophysiology of disease.

Publication Title

Integration of expression profiles and genetic mapping data to identify candidate genes in intracranial aneurysm.

Sample Metadata Fields

Sex, Age, Specimen part, Race

View Samples
accession-icon GSE24892
Nuclear receptors Nur77 and Nurr1 modulate mesenchymal stromal cell migration
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Expression analysis of migrating and non-migrating mesenchymal stromal cells (MSC) in fetal bone marrow

Publication Title

Nuclear receptors Nur77 and Nurr1 modulate mesenchymal stromal cell migration.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE60926
Prediction of isolated central nervous system relapses in pediatric acute lymphoblastic leukemia
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background In childhood acute lymphoblastic leukemia (ALL), central nervous system (CNS) involvement is rare at diagnosis (1-4%), but more frequent at relapse (~30%). Minimal residual disease diagnostics predict most bone marrow (BM) relapses, but likely cannot predict isolated CNS relapses. Consequently, CNS relapses may become relatively more important. Because of the significant late sequelae of CNS treatment, early identification of patients at risk of CNS relapse is crucial. Methods Gene expression profiles of ALL cells from cerebrospinal fluid (CSF) and ALL cells from BM were compared and differences were confirmed by real-time quantitative PCR. For a selected set of overexpressed genes, protein expression levels of ALL cells in CSF at relapse and of ALL cells in diagnostic BM samples were evaluated by 8-color flow cytometry. Results CSF-derived ALL cells showed a clearly different gene expression profile than BM-derived ALL cells, with differentially-expressed genes (including SCD and OPN) involved in survival and apoptosis pathways and linked to the JAK-STAT pathway. Flowcytometric analysis showed that a subpopulation of ALL cells (>1%) with a CNS signature (SCD positivity and increased OPN expression) was already present in BM at diagnosis in ALL patients who later developed a CNS relapse, but was <1% or absent in virtually all other patients. Conclusions The presence of a subpopulation of ALL cells with a CNS signature at diagnosis may predict isolated CNS relapse. Such information can be used to design new diagnostic and treatment strategies that aim at prevention of CNS relapse with reduced toxicity.

Publication Title

New cellular markers at diagnosis are associated with isolated central nervous system relapse in paediatric B-cell precursor acute lymphoblastic leukaemia.

Sample Metadata Fields

Sex, Age, Time

View Samples
accession-icon SRP064474
Patient-derived xenograft platform for metastatic melanoma: RNA sequencing of 4 melanoma PDX samples
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

The therapeutic landscape of melanoma is rapidly changing. While targeted inhibitors yield significant responses, their clinical benefit is often limited by the early onset of drug resistance. This motivates the pursuit to establish more durable clinical responses, by developing combinatorial therapies. But while potential new combinatorial targets steadily increase in numbers, they cannot possibly all be tested in patients. Similarly, while genetically engineered mouse melanoma models have great merit, they do not capture the enormous genetic diversity and heterogeneity typical in human melanoma. Furthermore, whereas in vitro studies have many advantages, they lack the presence of micro-environmental factors, which can have a profound impact on tumor progression and therapy response. This prompted us to develop an in vivo model for human melanoma that allows for studying the dynamics of tumor progression and drug response, with concurrent evaluation and optimization of new treatment regimens. Here, we present a collection of patient-derived xenografts (PDX), derived from BRAFV600E, NRASQ61 or BRAFWT/NRASWT melanoma metastases. The BRAFV600E PDX melanomas were acquired both prior to treatment with the BRAF inhibitor vemurafenib and after resistance had occurred, including six matched pairs. We find that PDX resemble their human donors’ melanomas regarding biomarkers, chromosomal aberrations, RNA expression profiles, mutational spectrum and targeted drug resistance patterns. Mutations, previously identified to cause resistance to BRAF inhibitors, are captured in PDX derived from resistant melanomThis melanoma PDX platform represents a comprehensive public resource to study both fundamental and translational aspects of melanoma progression and treatment in a physiologically relevant setting. Overall design: RNA sequencing of 4 melanoma PDX samples to validate the effects of a structural variant on BRAF mRNA in BRAF inhibitor resistant melanoma.

Publication Title

BRAF(V600E) Kinase Domain Duplication Identified in Therapy-Refractory Melanoma Patient-Derived Xenografts.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17269
Gene Expression Profiles of CD21low B cells in Common Variable Immunodeficiency
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The homeostasis of circulating B cell subsets in the peripheral blood of healthy adults is well regulated, but in disease it can be severely disturbed. Thus, a subgroup of patients with common variable immunodeficiency (CVID) presents with an extraordinary expansion of an unusual B cell population characterized by the low expression of CD21. Since these circulating atypical B cells in the blood of CVID patients could not be assigned to any certain B cell differentiation stage in the periphery, they were designated as CD21low B cells. Although, CD21low B cells are polyclonal and unmutated IgM+IgD+ B cells like naive B cells in the peripheral blood, they reveal several distinct phenotypic and functional features.

Publication Title

Circulating CD21low B cells in common variable immunodeficiency resemble tissue homing, innate-like B cells.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon SRP045876
Restoration of Progranulin Expression Rescues Cortical Neuron Generation in Induced Pluripotent Stem Cell Model of Frontotemporal Dementia
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

To understand how haploinsufficiency of progranulin (PGRN) protein causes frontotemporal dementia (FTD), we created induced pluripotent stem cells (iPSC) from patients carrying the GRNIVS1+5G>C mutation (FTD-iPSCs). FTD-iPSCs were fated to cortical neurons, the cells most affected in FTD and known to express PGRN. Although generation of neuroprogenitors was unaffected, their further differentiation into neurons, especially CTIP2-, FOXP2- or TBR1-TUJ1 double positive cortical neurons, was significantly decreased in FTD-neural progeny. Zinc finger nuclease-mediated introduction of PGRN cDNA into the AAVS1 locus corrected defects in cortical neurogenesis, demonstrating that PGRN haploinsufficiency causes inefficient cortical neuron generation. RNAseq analysis confirmed reversal of altered gene expression profile following genetic correction. Wnt signaling pathway, one of the top defective pathways in FTD-iPSC-derived neurons coupled with its reversal following genetic correction, makes it an important candidate. Therefore, we demonstrate for the first time that PGRN haploinsufficiency hampers corticogenesis in vitro. Overall design: We profiled 6 samples: two biological replicates for 3 conditions. Condition 1 consists of neuronal progeny derived from human Embryonic Stem Cells. Condition 2 consists of neuronal progeny derived from induced pluripotent stem cells generated from patients carrying PGRN mutation. Condition 3 consists of neuronal progeny derived from induced pluripotent stem cells generated from patients carrying PGRN mutation, genetically modified to correct the PGRN defect.

Publication Title

Restoration of progranulin expression rescues cortical neuron generation in an induced pluripotent stem cell model of frontotemporal dementia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE72140
Transcriptional profiling shows altered expression of wnt pathway- and lipid metabolism-related genes as well as melanogenesis-related genes in melasma.
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Melasma is a commonly acquired hyperpigmentary disorder of the face, but its pathogenesis is poorly understood and its treatment remains challenging. We conducted a comparative histological study on lesional and perilesional normal skin to clarify the histological nature of melasma. Significantly, higher amounts of melanin and of melanogenesis-associated proteins were observed in the epidermis of lesional skin, and the mRNA level of tyrosinase-related protein 1 was higher in lesional skin, indicating regulation at the mRNA level. However, melanocyte numbers were comparable between lesional and perilesional skin. A transcriptomic study was undertaken to identify genes involved in the pathology of melasma. A total of 279 genes were found to be differentially expressed in lesional and perilesional skin. As was expected, the mRNA levels of a number of known melanogenesis-associated genes, such as tyrosinase, were found to be elevated in lesional skin. Bioinformatics analysis revealed that the most lipid metabolism-associated genes were downregulated in lesional skin, and this finding was supported by an impaired barrier function in melasma. Interestingly, a subset of Wnt signaling modulators, including Wnt inhibitory factor 1, secreted frizzled-related protein 2, and Wnt5a, were also found to be upregulated in lesional skin. Immunohistochemistry confirmed the higher expression of these factors in melasma lesions.

Publication Title

Transcriptional profiling shows altered expression of wnt pathway- and lipid metabolism-related genes as well as melanogenesis-related genes in melasma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27669
Expression data from Arabidopsis Col-0 expressing FLAG-SUB1A or FLAG-SUB1C rice ERFs
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

In rice (Oryza sativa L.), the haplotype at the multigenic SUBMERGENCE 1 (SUB1) locus determines survival of prolonged submergence. SUB1 encodes two or three group VII Ethylene Response Factor (ERF) family transcription factors, SUB1A, SUB1B and SUB1C. A highly submergence-inducible SUB1A allele is present in lines that are submergence tolerant. This gene is the determinant of submergence tolerance. Here, the heterologous ectopic expression of rice SUB1A and SUB1C in Arabidopsis thaliana was employed to assess the transcriptional network mobilized by ectopic expression of SUB1A and SUB1C.

Publication Title

Expression of rice SUB1A and SUB1C transcription factors in Arabidopsis uncovers flowering inhibition as a submergence tolerance mechanism.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE29187
Impact of RAP2.12 alterations on gene expression in hypoxic and aerobic conditions
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

In this study we analyzed the effect of overexpression of an HA-tagged version of the ERF RAP2.12 on the transcriptome levels in aerobic and hypoxic-treated (O2 21% and 1%, respectively) Arabidopsis thaliana rosettes.

Publication Title

Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization.

Sample Metadata Fields

Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact