Rheumatoid arthritis (RA) is a chronic, inflammatory joint disease of unknown etiology and pronounced inter-patient heterogeneity. To characterize RA at the molecular level and to uncover key pathomechanisms, we performed whole-genome gene expression analyses. Synovial tissues from rheumatoid arthritis patients were compared to those from osteoarthritis patients and to normal donors.
Molecular signatures and new candidates to target the pathogenesis of rheumatoid arthritis.
Sex, Age
View SamplesOrofacial clefts (OFCs) are the most frequent craniofacial birth defects. An orofacial cleft (OFC) occurs as a result of deviations in palatogenesis. Cell proliferation, differentiation, adhesion, migration and apoptosis are crucial in palatogenesis. We hypothesized that deregulation of these processes in oral keratinocytes contributes to OFC. We performed microarray expression analysis on palatal keratinocytes from OFC and non-OFC individuals. Principal component analysis showed a clear difference in gene expression with 24 and 17% for the first and second component respectively. In OFC cells, 228 genes were differentially expressed (p<0.001). Gene ontology analysis showed enrichment of genes involved in β1 integrin-mediated adhesion and migration, as well as in P-cadherin expression. A scratch assay demonstrated reduced migration of OFC keratinocytes (343.6 ± 29.62 μm) vs. non-OFC keratinocytes (503.4 ± 41.81 μm, p<0.05). Our results indicate that adhesion and migration are deregulated in OFC keratinocytes, which might contribute to OFC pathogenesis.
Deregulated Adhesion Program in Palatal Keratinocytes of Orofacial Cleft Patients.
Specimen part
View SamplesPediatric high-grade gliomas (pHGGs) harboring the K27M mutation of H3F3A (histone H3.3) are characterized by global reduction of the repressive histone mark H3K27me3 and DNA hypomethylation.
Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas.
Sex, Age, Disease, Disease stage
View SamplesGlobal microarray (HG U133 Plus 2.0) was used to investigate the effects of resistance exercise and resistance training on the skeletal muscle transcriptome profile of 28 young and old adults. Vastus lateralis muscle biopsies were obtained pre and 4hrs post resistance exercise in the beginning (untrained state) and at the end (trained state) of a 12 wk progressive resistance training program.
Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults.
Sex, Specimen part, Time
View SamplesGlobal microarray (HG U133 Plus 2.0) was used for the first time to investigate the effects of resistance exercise on the transcriptome in slow-twitch myosin heavy chain (MHC) I and fast-twitch MHC IIa muscle fibers of young and old women. Vastus lateralis muscle biopsies were obtained pre and 4hrs post resistance exercise in the beginning (untrained state) and at the end (trained state) of a 12 wk progressive resistance training program.
Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults.
Sex, Specimen part, Subject, Time
View SamplesGlobal microarray (HG U133 Plus 2.0) was used to investigate the basal level skeletal muscle transcriptome profile of young and old adults. One vastus lateralis muscle biopsy was obtained in the basal state from 36 different subjects.
Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults.
Sex, Specimen part
View SamplesSpermatogonia expressing the highest levels of ID4 (ID4-GFP Bright) represent a population highly enriched for spermatogonial stem cells (SSC) while those expressing lower levels (ID4-GFP Dim) are the putative immediate progenitors. Comparing the transcriptome of these populations can provide insight into the SSC to progenitor transition. Overall design: Comparison of transcriptomes of ID4-GFP Bright and ID4-GFP Dim spermatogonia from postnatal day 8 mouse pups
ID4 levels dictate the stem cell state in mouse spermatogonia.
Specimen part, Subject
View SamplesEstrogen receptor positive (ER+) breast cancers that develop resistance to therapies that target the ER are the most common cause of breast cancer death. Beyond mutations in ER, which occur in 25-30% of patients treated with aromatase inhibitors (AIs), our understanding of clinical mechanisms of resistance to ER-directed therapies remains incomplete. We identified activating HER2 mutations in metastatic biopsies from eight patients with ER+ metastatic breast cancer who had developed resistance to ER-directed agents, including AIs, tamoxifen, and fulvestrant. Examination of treatment-naïve primary tumors in five patients revealed no evidence of pre-existing mutations in four of five patients, suggesting that these mutations were acquired under the selective pressure of ER-directed therapy. These mutations were mutually exclusive with ER mutations, suggesting a distinct mechanism of acquired resistance to ER-directed therapies. In vitro analysis confirmed that these mutations conferred estrogen independence. In addition, and in contrast to ER mutations, these mutations resulted in resistance to tamoxifen, fulvestrant, and the CDK4/6 inhibitor palbociclib. Resistance was overcome by combining ER-directed therapy with the irreversible HER2 kinase inhibitor neratinib, highlighting an effective treatment strategy in these patients. Overall design: Examination of the transcriptional output (mRNA) of the HER2 activating mutations compared with controls under various drugs. Specifically, we expressed the activating mutations S653C, L755S, V777L, and L869R in ER+/HER2- breast cancer cell line (T47D), and controls (GFP, wild-type HER2, kinase-dead HER2, and ESR1 Y537S). Cell were then treated with DMSO, 1µM fulvestrant, 1µM neratinib, 10µM palbociclib, 1µM fulvestrant + 1µM neratinib, or 1µM fulvestrant + 10µM palbociclib for 24 hours. All experimental conditions were done in 6 replicates, sequenced in 3 replicates
Acquired HER2 mutations in ER<sup>+</sup> metastatic breast cancer confer resistance to estrogen receptor-directed therapies.
No sample metadata fields
View SamplesEwing sarcoma family of tumors (ESFT) are aggressive bone and soft tissue tumors of unknown cellular origin. Most ESFT express EWS-FLI1, a chimeric protein which functions as a growth-promoting oncogene in ESFT but is toxic to most normal cells. A major difficulty in understanding EWS-FLI1 function has been the lack of an adequate model in which to study EWS-FLI1-induced transformation. Although the cell of origin of ESFT remains elusive, both mesenchymal (MSC) and neural crest (NCSC) have been implicated. We recently developed the tools to generate NCSC from human embryonic stem cells (hNCSC). In the current study we used this model to test the hypothesis that neural crest-derived stem cells are the cells of origin of ESFT and to evaluate the consequences of EWS-FLI1 expression on human neural crest biology.
Modeling initiation of Ewing sarcoma in human neural crest cells.
Specimen part
View SamplesFanconi anemia (FA) is a genetic disorder characterized by congenital abnormalities, bone marrow failure and increased susceptibility to cancer. Of the fifteen FA proteins, Fanconi anemia group C (FANCC) is one of eight FA core complex components of the FA pathway. Unlike other FA core complex proteins, FANCC is mainly localized in the cytoplasm, where it is thought to function in apoptosis, redox regulation, cytokine signaling and other processes. Previously, we showed that regulation of FANCC involved proteolytic processing during apoptosis. To elucidate the biological significance of this proteolytic modification, we searched for molecular interacting partners of proteolytic FANCC fragments. Among the candidates obtained, the transcriptional corepressor protein C-terminal binding protein-1 (CtBP1) interacted directly with FANCC and other FA core complex proteins. Although not required for stability of the FA core complex or ubiquitin ligase activity, CtBP1 is essential for proliferation, cell survival and maintenance of chromosomal integrity. Expression profiling of CtBP1-depleted and FA-depleted cells revealed that several genes were commonly up- and down-regulated, including the Wnt antagonist Dickkopf-1 (DKK1). These findings suggest that FA and Wnt signaling via CtBP1 could share common effectors.
Fanconi anemia proteins interact with CtBP1 and modulate the expression of the Wnt antagonist Dickkopf-1.
Cell line
View Samples