Whole genome expression profiling in the presence and absence of annexin A2 [shRNA] identified fundamentally altered transcriptional programming that changes the radioresponsive transcriptome.
Annexin A2 modulates radiation-sensitive transcriptional programming and cell fate.
Treatment, Time
View SamplesDiagnostic samples of peripheral blood form acute myeloid leukemia were analysed for gene expression differences
NFATc1 as a therapeutic target in FLT3-ITD-positive AML.
Sex, Specimen part
View SamplesGene expression profiling by high-throughput sequencing reveals qualitative and quantitative changes in RNA species at steady-state but obscures the intracellular dynamics of RNA transcription, processing and decay. We developed thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq), an orthogonal chemistry-based epitranscriptomics-sequencing technology that uncovers 4-thiouridine (s4U)-incorporation in RNA species at single-nucleotide resolution. In combination with well-established metabolic RNA labeling protocols and coupled to standard, low-input, high-throughput RNA sequencing methods, SLAM-seq enables rapid access to RNA polymerase II-dependent gene expression dynamics in the context of total RNA. When applied to mouse embryonic stem cells, SLAM-seq provides global and transcript-specific insights into pluripotency-associated gene expression. We validated the method by showing that the RNA-polymerase II-dependent transcriptional output scales with Oct4/Sox2/Nanog-defined enhancer activity; and provides quantitative and mechanistic evidence for transcript-specific RNA turnover mediated by post-transcriptional gene regulatory pathways initiated by microRNAs and N6-methyladenosine. SLAM-seq facilitates the dissection of fundamental mechanisms that control gene expression in an accessible, cost-effective, and scalable manner. Overall design: Wildtype mouse embryonic stem cells (mES cells) were subjected to s4U metabolic RNA labeling for 24 h (pulse, 100 µM s4U), followed by washout (chase) using non-thiol-containing uridine. Total RNA was prepared at various time points along the chase (0h, 0.5h, 1h, 3h, 6h, 12h, and 24h). Total RNA was then subjected to alkylation and mRNA 3' end sequencing library preparation (QuantSeq, Lexogen).
Quantification of experimentally induced nucleotide conversions in high-throughput sequencing datasets.
Specimen part, Treatment, Subject
View SamplesGene expression profiling by high-throughput sequencing reveals qualitative and quantitative changes in RNA species at steady-state but obscures the intracellular dynamics of RNA transcription, processing and decay. We developed thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq), an orthogonal chemistry-based epitranscriptomics-sequencing technology that uncovers 4-thiouridine (s4U)-incorporation in RNA species at single-nucleotide resolution. In combination with well-established metabolic RNA labeling protocols and coupled to standard, low-input, high-throughput RNA sequencing methods, SLAM-seq enables rapid access to RNA polymerase II-dependent gene expression dynamics in the context of total RNA. When applied to mouse embryonic stem cells, SLAM-seq provides global and transcript-specific insights into pluripotency-associated gene expression. We validated the method by showing that the RNA-polymerase II-dependent transcriptional output scales with Oct4/Sox2/Nanog-defined enhancer activity; and provides quantitative and mechanistic evidence for transcript-specific RNA turnover mediated by post-transcriptional gene regulatory pathways initiated by microRNAs and N6-methyladenosine. SLAM-seq facilitates the dissection of fundamental mechanisms that control gene expression in an accessible, cost-effective, and scalable manner. Overall design: 5 µg/ml Actinomycin D was added to wildtype mouse embryonic stem (mES) cells and total RNA was prepared at various time points after addition of Actinomycin D (0h, 0.25h, 0.5h, 1h, 3h and 10h). Total RNA was subjected to mRNA 3' end library preparation (QuantSeq, Lexogen) and high througput sequencing.
Quantification of experimentally induced nucleotide conversions in high-throughput sequencing datasets.
Specimen part, Treatment, Subject
View SamplesGene expression profiling by high-throughput sequencing reveals qualitative and quantitative changes in RNA species at steady-state but obscures the intracellular dynamics of RNA transcription, processing and decay. We developed thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq), an orthogonal chemistry-based epitranscriptomics-sequencing technology that uncovers 4-thiouridine (s4U)-incorporation in RNA species at single-nucleotide resolution. In combination with well-established metabolic RNA labeling protocols and coupled to standard, low-input, high-throughput RNA sequencing methods, SLAM-seq enables rapid access to RNA polymerase II-dependent gene expression dynamics in the context of total RNA. When applied to mouse embryonic stem cells, SLAM-seq provides global and transcript-specific insights into pluripotency-associated gene expression. We validated the method by showing that the RNA-polymerase II-dependent transcriptional output scales with Oct4/Sox2/Nanog-defined enhancer activity; and provides quantitative and mechanistic evidence for transcript-specific RNA turnover mediated by post-transcriptional gene regulatory pathways initiated by microRNAs and N6-methyladenosine. SLAM-seq facilitates the dissection of fundamental mechanisms that control gene expression in an accessible, cost-effective, and scalable manner. Overall design: Wildtype (wt) mouse embryonic stem (mES) cells, clonal mES cells that had been transfected with non-targeting control guide RNAs (ctr), or Exportin-5 depleted (Xpo5KO) mES cells were subjected to 3h and 12h s4U-pulse labeling followed by total RNA extraction, alkylation, mRNA 3' end library preparation (QuantSeq, Lexogen) and high throughput sequencing.
Quantification of experimentally induced nucleotide conversions in high-throughput sequencing datasets.
Specimen part, Treatment, Subject
View SamplesGene expression profiling by high-throughput sequencing reveals qualitative and quantitative changes in RNA species at steady-state but obscures the intracellular dynamics of RNA transcription, processing and decay. We developed thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq), an orthogonal chemistry-based epitranscriptomics-sequencing technology that uncovers 4-thiouridine (s4U)-incorporation in RNA species at single-nucleotide resolution. In combination with well-established metabolic RNA labeling protocols and coupled to standard, low-input, high-throughput RNA sequencing methods, SLAM-seq enables rapid access to RNA polymerase II-dependent gene expression dynamics in the context of total RNA. When applied to mouse embryonic stem cells, SLAM-seq provides global and transcript-specific insights into pluripotency-associated gene expression. We validated the method by showing that the RNA-polymerase II-dependent transcriptional output scales with Oct4/Sox2/Nanog-defined enhancer activity; and provides quantitative and mechanistic evidence for transcript-specific RNA turnover mediated by post-transcriptional gene regulatory pathways initiated by microRNAs and N6-methyladenosine. SLAM-seq facilitates the dissection of fundamental mechanisms that control gene expression in an accessible, cost-effective, and scalable manner. Overall design: Wildtype (wt) mouse embryonic stem (mES) cells, clonal mES cells that had been transfected with non-targeting control guide RNAs (ctr), or Mettl3 depleted (Mettl3KO) mES cells were subjected to 3h and 12h s4U-pulse labeling followed by total RNA extraction, alkylation, mRNA 3´ end library preparation (QuantSeq, Lexogen) and high throughput sequencing.
Quantification of experimentally induced nucleotide conversions in high-throughput sequencing datasets.
Specimen part, Treatment, Subject
View SamplesGene expression profiling by high-throughput sequencing reveals qualitative and quantitative changes in RNA species at steady-state but obscures the intracellular dynamics of RNA transcription, processing and decay. We developed thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq), an orthogonal chemistry-based epitranscriptomics-sequencing technology that uncovers 4-thiouridine (s4U)-incorporation in RNA species at single-nucleotide resolution. In combination with well-established metabolic RNA labeling protocols and coupled to standard, low-input, high-throughput RNA sequencing methods, SLAM-seq enables rapid access to RNA polymerase II-dependent gene expression dynamics in the context of total RNA. When applied to mouse embryonic stem cells, SLAM-seq provides global and transcript-specific insights into pluripotency-associated gene expression. We validated the method by showing that the RNA-polymerase II-dependent transcriptional output scales with Oct4/Sox2/Nanog-defined enhancer activity; and provides quantitative and mechanistic evidence for transcript-specific RNA turnover mediated by post-transcriptional gene regulatory pathways initiated by microRNAs and N6-methyladenosine. SLAM-seq facilitates the dissection of fundamental mechanisms that control gene expression in an accessible, cost-effective, and scalable manner. Overall design: Mouse embryonic stem (mES) cells were subjected to 45 min s4U-pulse labeling followed by total RNA extraction, alkylation, mRNA 3' end library preparation (Quant-seq, Lexogen) and high throughput sequencing.
Quantification of experimentally induced nucleotide conversions in high-throughput sequencing datasets.
Specimen part, Treatment, Subject
View SamplesGene expression profiling by high-throughput sequencing reveals qualitative and quantitative changes in RNA species at steady-state but obscures the intracellular dynamics of RNA transcription, processing and decay. We developed thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq), an orthogonal chemistry-based epitranscriptomics-sequencing technology that uncovers 4-thiouridine (s4U)-incorporation in RNA species at single-nucleotide resolution. In combination with well-established metabolic RNA labeling protocols and coupled to standard, low-input, high-throughput RNA sequencing methods, SLAM-seq enables rapid access to RNA polymerase II-dependent gene expression dynamics in the context of total RNA. When applied to mouse embryonic stem cells, SLAM-seq provides global and transcript-specific insights into pluripotency-associated gene expression. We validated the method by showing that the RNA-polymerase II-dependent transcriptional output scales with Oct4/Sox2/Nanog-defined enhancer activity; and provides quantitative and mechanistic evidence for transcript-specific RNA turnover mediated by post-transcriptional gene regulatory pathways initiated by microRNAs and N6-methyladenosine. SLAM-seq facilitates the dissection of fundamental mechanisms that control gene expression in an accessible, cost-effective, and scalable manner. Overall design: Total RNA from wildtype mouse embryonic stem (mES cells) was extracted and subjected to alkylation or mock treatment prior to mRNA 3' end library preparation (QuantSeq, Lexogen) and high throughput sequencing.
Quantification of experimentally induced nucleotide conversions in high-throughput sequencing datasets.
Specimen part, Treatment, Subject
View SamplesERG overexpression was conducted in stably transfected K562 cell line with a tet-on inducible plasmid habouring ERG3. Prolonged induction of ERG (8 days) produced spindle cell shape changes whereas non-induced cells retained the round morphology. In oder to determine the genes responsible for inducing cell shape changes, a genome wide transcriptional screen was conducted.
ERG induces a mesenchymal-like state associated with chemoresistance in leukemia cells.
Cell line, Treatment
View SamplesGene expression patterns of testicular seminoma were analysed applying oligonucleotide microarrays in 40 specimens of different tumour stages (pT1, pT2, pT3) and in 3 normal testes.
Gene signatures of testicular seminoma with emphasis on expression of ets variant gene 4.
No sample metadata fields
View Samples