This SuperSeries is composed of the SubSeries listed below.
A systematic evaluation of miRNA:mRNA interactions involved in the migration and invasion of breast cancer cells.
Specimen part, Cell line
View SamplesIn this study we performed a systematic evaluation of functional miRNA-mRNA interactions associated with the aggressiveness of breast cancer cells using a combination of integrated miRNA and mRNA expression profiling, bioinformatics prediction, and functional assays. Analysis of the miRNA expression identified 11 miRNAs that were differentially expressed, including 7 down-regulated (miR-200c, miR-205, miR-203, miR-141, miR-34a, miR-183, and miR-375) and 4 up-regulated miRNAs (miR-146a, miR-138, miR-125b1 and miR-100), in aggressive cell lines when compared to normal and less aggressive cell lines. Transient overexpression of miR-200c, miR-205, and miR-375 in MDA-MB-231 cells led to the inhibition of cell migration and invasion. The integrated analysis of miRNA and mRNA expression identified 35 known and novel target genes of miR-200c, miR-205, and mir-375, including CFL2, LAMC1, TIMP2, ZEB1, CDH11, PRKCA, PTPRJ, PTPRM, LDHB, and SEC23A. Surprisingly, the majority of these genes (27 genes) were target genes of miR-200c, suggesting that it plays a more important role in regulating the aggressiveness of breast cancer cells. We characterized one of the target genes of miR-200c, CFL2, and demonstrated that CFL2 is overexpressed in aggressive breast cancer cell lines and can be significantly down-regulated by exogenous miR-200c. Tissue microarray analysis further revealed that CFL2 expression in primary breast cancer tissue correlated with tumor grade. To our knowledge, this study is the first systematic screening of functional miRNA target genes in aggressive breast cancer cells. The results obtained from this study may improve our understanding of the role of these candidate miRNAs and their target genes in relation to breast cancer aggressiveness and ultimately lead to the identification of novel biomarkers associated with prognosis.
A systematic evaluation of miRNA:mRNA interactions involved in the migration and invasion of breast cancer cells.
Specimen part, Cell line
View SamplesThe molecular mechanisms underlying vascular inflammation and associated inflammatory vascular diseases are not well defined. Here we show that endothelial intracellular adenosine and its key regulator adenosine kinase (ADK) play important roles in vascular inflammation. Pro-inflammatory stimuli lead to endothelial inflammation by increasing endothelial ADK expression, reducing the level of intracellular adenosine in endothelial cells, and activating the transmethylation pathway through increasing the association of ADK with S-adenosylhomocysteine (SAH) hydrolase (SAHH). Increasing intracellular adenosine by genetic ADK knockdown or exogenous adenosine reduces activation of the transmethylation pathway and attenuates the endothelial inflammatory response. In addition, loss of endothelial ADK in mice leads to reduced atherosclerosis and affords protection against ischemia/reperfusion injury of the cerebral cortex. Taken together, these results demonstrate that intracellular adenosine, which is controlled by the key molecular regulator ADK, influences endothelial inflammation and vascular inflammatory diseases.
No associated publication
Specimen part
View SamplesMicroarray gene expression profiling reveals that PHGDH inhibition by NCT-503 activates a metabolic stress response characterized by downregulation of cell cycle genes and induction of stress response genes.
Metabolic Reprogramming by MYCN Confers Dependence on the Serine-Glycine-One-Carbon Biosynthetic Pathway.
Specimen part, Cell line
View SamplesThe co-chaperone Unc45A is essential for cancer cell growth. We show that Unc45A, a cytoplasmic protein in normal cells, becomes nuclear in cancer cells. We used Microarray to determine the impact of UNC45A on gene expression. We found that Unc45A unctions as a co-activator of the glucocorticoid receptor. In this capacity, it differentially promotes expression of the mitotic kinase NEK7 and other genes possibly through regulation of nuclear receptors.
No associated publication
Sex, Cell line
View SamplesIn this study we performed a systematic evaluation of functional miRNA-mRNA interactions associated with the aggressiveness of breast cancer cells using a combination of integrated miRNA and mRNA expression profiling, bioinformatics prediction, and functional assays. Analysis of the miRNA expression identified 11 miRNAs that were differentially expressed, including 7 down-regulated (miR-200c, miR-205, miR-203, miR-141, miR-34a, miR-183, and miR-375) and 4 up-regulated miRNAs (miR-146a, miR-138, miR-125b1 and miR-100), in aggressive cell lines when compared to normal and less aggressive cell lines. Transient overexpression of miR-200c, miR-205, and miR-375 in MDA-MB-231 cells led to the inhibition of cell migration and invasion. The integrated analysis of miRNA and mRNA expression identified 35 known and novel target genes of miR-200c, miR-205, and mir-375, including CFL2, LAMC1, TIMP2, ZEB1, CDH11, PRKCA, PTPRJ, PTPRM, LDHB, and SEC23A. Surprisingly, the majority of these genes (27 genes) were target genes of miR-200c, suggesting that it plays a more important role in regulating the aggressiveness of breast cancer cells. We characterized one of the target genes of miR-200c, CFL2, and demonstrated that CFL2 is overexpressed in aggressive breast cancer cell lines and can be significantly down-regulated by exogenous miR-200c. Tissue microarray analysis further revealed that CFL2 expression in primary breast cancer tissue correlated with tumor grade. To our knowledge, this study is the first systematic screening of functional miRNA target genes in aggressive breast cancer cells. The results obtained from this study may improve our understanding of the role of these candidate miRNAs and their target genes in relation to breast cancer aggressiveness and ultimately lead to the identification of novel biomarkers associated with prognosis.
A systematic evaluation of miRNA:mRNA interactions involved in the migration and invasion of breast cancer cells.
Specimen part
View SamplesTranscriptional profiling of histone methyltransferase SUV39H1-selective small molecule inhibitor F5446-induced genes in human colon carcinoma cells. Tumor cells were treated with F5446 for 48h and used for RNA isolation. The treated cells were compared to untreated control cells. The objective is to identify genes that are regulated by H3K9me3 in the metastatic human colon carcinoma cells.
SUV39H1 regulates human colon carcinoma apoptosis and cell cycle to promote tumor growth.
Treatment
View SamplesThe purpose of this study was to characterize the transcriptional effects induced by subcutaneous IFN-beta-1b treatment (Betaferon, 250 g every other day) in patients with relapsing-remitting form of multiple sclerosis (MS).
Long-term genome-wide blood RNA expression profiles yield novel molecular response candidates for IFN-beta-1b treatment in relapsing remitting MS.
Sex
View SamplesThis SuperSeries is composed of the SubSeries listed below.
No associated publication
Specimen part
View SamplesGene expression profile comparison from fibroblasts of Huntington individuals and normal ones
Gene expression profile in fibroblasts of Huntington's disease patients and controls.
Sex, Age, Specimen part, Disease
View Samples