The goal of the study was to identify transcriptional correlates of SLE disease activity both at the cohort and at the individual levels. To do so, we longitudinally profiled the whole blood transcriptomes of 158 SLE patients by microarray for up to 4 years, yielding 924 SLE samples and 48 matched pediatric healthy samples. The transcriptional data are complemented by demographic, laboratory and clinical data.
Personalized Immunomonitoring Uncovers Molecular Networks that Stratify Lupus Patients.
Sex, Age, Specimen part, Disease, Disease stage, Treatment, Race, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptional specialization of human dendritic cell subsets in response to microbial vaccines.
Specimen part, Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
No associated publication
Specimen part, Disease, Disease stage, Treatment, Subject, Time
View SamplesThe use of microbiological cultures for diagnosing bacterial infections in young febrile infants have substantial limitations, including false positive and false negative cultures, and non-ideal turn-around times. Analysis of host genomic expression patterns (RNA biosignatures) in response to the presence of specific pathogens, however, may provide an alternate and potentially improved diagnostic approach. This study was designed to define bacterial and non-bacterial RNA biosignatures to distinguish these infections in young febrile infants.
Association of RNA Biosignatures With Bacterial Infections in Febrile Infants Aged 60 Days or Younger.
Sex, Age, Specimen part, Race
View SamplesThe goal of this study was to characterize altered inducible immune networks in Systemic onset juvenile idiopathic arthritis (sJIA), an IL-1-driven autoinflammatory disease of unknown etiology. To this end, we developed a high-throughput assay that quantifies the transcriptional and protein-level responses of blood leukocytes to innate stimuli. Herein, we report transcriptional data from healthy adult blood stimulated with 16 different conditions, including TLR ligands, cytosolic receptor ligands and inflammatory cytokines. We further report blood transcriptional profiles from sJIA patients with various disease activity and treatment statuses, both ex vivo (baseline) and after in vitro stimulation with a subset of innate stimuli including heat-killed bacterial pathogens.
No associated publication
Specimen part, Disease stage, Treatment, Subject, Time
View SamplesThe diagnosis of Kawasaki disease (KD) is often difficult to distinguish from adenovirus (HAdV) and Group A streptococcal disease (GAS). We sought to: 1) to define the KD transcriptional signature that can aid in the diagnosis of complete and incomplete KD in children; 2) to identify specific biomarkers that objectively discriminate between KD and other mimicking conditions, including HAdV and 3) to test the prognostic utility of GEP to determine response to IVIG therapy and development of coronary artery lesions (CAL). Methods: Blood RNA samples were analyzed from 76 pediatric patients with complete KD, 13 with incomplete KD, 19 patients with HAdV, 17 patients with GAS disease, and age- and sex-matched healthy controls (HC). We used class comparisons (MW p< 0.01, Benjamini-Hochberg, and 1.25 fold change filter), class prediction, modular analysis and MDTH analyses to define the specificity of the KD profiles and identify markers of severity. Results: Statistical group comparisons identified 7,899 genes differentially expressed in 39 complete KD patients versus HC (KD biosignature). This signature was validated in another 37 patients with complete KD and in 13 patients with incomplete KD. Modular analysis in children with complete KD demonstrated overexpression of inflammation, neutrophils, myeloid cell, coagulation cascade, and cell cycle genes. The KNN class prediction algorithm identified 25-classifier genes that differentiated children with KD vs HAdV infection in two independent cohorts of patients with 96% (95% CI [80%-99%]) sensitivity and 95% [74%-99%] specificity. MDTH scores in KD patients significantly correlated with the baseline c-reactive protein (R=0.29, p=0.008) and was four fold higher than in children with HAdV (p<0.01). In addition, KD patients that remained febrile 36 hours after treatment with IVIG (non-responders) demonstrated higher baseline, pre-treatment MDTH values compared with responders [12,290 vs. 5,572 respectively; p=0.009]. Conclusion: Transcriptional signatures can be used as a tool to discriminate between KD and HAdV infection, and may also provide prognostic information.
Whole blood transcriptional profiles as a prognostic tool in complete and incomplete Kawasaki Disease.
Sex, Specimen part, Race
View SamplesHuman rhinoviruses (HRV) are among the most common causes of respiratory infections in humans but can be frequently detected also in asymptomatic subjects. We evaluated the value of gene expression profiles to differentiate asymptomatic detection from symptomatic HRV infection in children.
Rhinovirus Detection in Symptomatic and Asymptomatic Children: Value of Host Transcriptome Analysis.
Sex, Age, Specimen part, Disease, Disease stage, Race
View SamplesThis SuperSeries is composed of the SubSeries listed below.
IFN priming is necessary but not sufficient to turn on a migratory dendritic cell program in lupus monocytes.
Specimen part, Disease, Disease stage, Treatment, Subject, Time
View SamplesWhile dendritic cells (DCs) are known to play a major role in the process of vaccination, the mechanisms by which vaccines induce protective immunity in humans remain elusive. Herein, we used gene microarrays to characterize the transcriptional programs induced over time in human monocyte-derived DCs (moDCs) in vitro in response to influenza H1N1 Brisbane, Salmonella enterica and Staphylococcus aureus. We built a data-driven modular analytical framework focused on 204 pathogen-induced gene clusters. The expression of these modules was analyzed in response to 16 well-defined ligands, targeting TLRs, cytoplasmic PAMP receptors and cytokine receptors. This multi-dimensional framework covers the major biological functions of APC, including the IFN response, inflammation, DC maturation, T cell activation, antigen processing, cell motility and histone regulation. This framework was used to characterize the response of monocytes and moDCs to 14 commercially available vaccines. These vaccines displayed quantitatively and qualitatively distinct modular signatures in monocytes and DCs, in particular Fluzone and Pneumovax, highlighting the functional and phenotypic differences between APC subsets. This modular framework allows the application of systems immunology approaches to study early transcriptional changes in human APC subsets in response to pathogens and vaccines, which might guide the development of improved vaccines.
Transcriptional specialization of human dendritic cell subsets in response to microbial vaccines.
Specimen part, Subject, Time
View SamplesWhile dendritic cells (DCs) are known to play a major role in the process of vaccination, the mechanisms by which vaccines induce protective immunity in humans remain elusive. Herein, we used gene microarrays to characterize the transcriptional programs induced over time in human monocyte-derived DCs (moDCs) in vitro in response to influenza H1N1 Brisbane, Salmonella enterica and Staphylococcus aureus. We built a data-driven modular analytical framework focused on 204 pathogen-induced gene clusters. The expression of these modules was analyzed in response to 16 well-defined ligands, targeting TLRs, cytoplasmic PAMP receptors and cytokine receptors. This multi-dimensional framework covers the major biological functions of APC, including the IFN response, inflammation, DC maturation, T cell activation, antigen processing, cell motility and histone regulation. This framework was used to characterize the response of monocytes and moDCs to 14 commercially available vaccines. These vaccines displayed quantitatively and qualitatively distinct modular signatures in monocytes and DCs, in particular Fluzone and Pneumovax, highlighting the functional and phenotypic differences between APC subsets. This modular framework allows the application of systems immunology approaches to study early transcriptional changes in human APC subsets in response to pathogens and vaccines, which might guide the development of improved vaccines.
Transcriptional specialization of human dendritic cell subsets in response to microbial vaccines.
Specimen part, Subject, Time
View Samples