refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 5010 results
Sort by

Filters

Technology

Platform

accession-icon GSE30101
Genome-wide profiling of whole blood from healthy adult volunteers before and after receiving non-live vaccines including seasonal influenza or pneumococcal vaccine or placebo (saline) injections
  • organism-icon Homo sapiens
  • sample-icon 693 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Systems scale interactive exploration reveals quantitative and qualitative differences in response to influenza and pneumococcal vaccines.

Sample Metadata Fields

Sex, Age, Race, Subject

View Samples
accession-icon GSE48762
Genome-wide profiling of whole blood from healthy adult volunteers before and after receiving non-live vaccines including seasonal influenza or pneumococcal vaccine or placebo (saline) injections II
  • organism-icon Homo sapiens
  • sample-icon 621 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

The objective of this study is to: 1) Characterize the immune responsiveness to administration of non-live vaccines in three cohorts of healthy adult subjects through the analysis of blood leukocytes transcriptional profiles. 2) Validate whole blood transcriptional profiles generated from standard 3mL blood draws versus 200uL blood draws obtained by finger stick. 3) Discover potential biomarkers for immune-responsiveness to non-live vaccines.

Publication Title

Systems scale interactive exploration reveals quantitative and qualitative differences in response to influenza and pneumococcal vaccines.

Sample Metadata Fields

Sex, Age, Race, Subject

View Samples
accession-icon GSE11907
A Modular Analysis Framework for Blood Genomics Studies: Application to Systemic Lupus Erythematosus
  • organism-icon Homo sapiens
  • sample-icon 340 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The analysis of patient blood transcriptional profiles offers a means to investigate the immunological mechanisms relevant to human diseases on a genome-wide scale. In addition, such studies provide a basis for the discovery of clinically relevant biomarker signatures. We designed a strategy for microarray analysis that is based on the identification of transcriptional modules formed by genes coordinately expressed in multiple disease data sets. Mapping changes in gene expression at the module level generated disease-specific transcriptional fingerprints that provide a stable framework for the visualization and functional interpretation of microarray data. These transcriptional modules were used as a basis for the selection of biomarkers and the development of a multivariate transcriptional indicator of disease progression in patients with systemic lupus erythematosus. Thus, this work describes the implementation and application of a methodology designed to support systems-scale analysis of the human immune system in translational research settings.

Publication Title

A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus.

Sample Metadata Fields

Sex, Age, Race

View Samples
accession-icon GSE19491
Blood Transcriptional Profiles in Human Active and Latent Tuberculosis
  • organism-icon Homo sapiens
  • sample-icon 498 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

This series regroups different datasets (training set, test set, validation set, longitudinal set, separated cell set) to identify and characterise a specific transcriptional signature for patients with active TB, distinct from patients with latent TB and healthy controls. The training set dataset was used to identify a whole blood transcriptional signature for active TB patients in London, across a range of ethnicity. This signature was then validated in an independent cohort of patients, also recruited in London (the test set), and then further confirmed in an additional independent cohort recruited in Cape Town, South Africa (validation set), in order to confirm that the defined signature was present in both high (Cape Town, South Africa) and medium incidence regions (London, UK). The longitudinal dataset was then used to explore how successful TB treatment modifies this transcriptional signature. The separated cell set compares the transcriptional profiles in purified cell subsets (neutrophils, monocytes and T cells) to assess which cell types are contributing to the whole blood signature, and in what way. These studies may ultimately help to improve the diagnosis of active tuberculosis which normally relies on culture of the bacilli, which can take up to 6 weeks, and sometimes the bacilli cannot be obtained from sputum thus requiring invasive techniques such as bronchoalveolar lavage (BAL). In some cases (30%) the bacill cannot be grown from sputum or BAL. Any diagnostic tool would need to be valid across a range of ethnicities, and be valid in both high and low incidence countries. A further aim was to determine whether latent TB patients have a distinct homogeneous or heterogeneous signature, since it is not currently possible to determine using present tests (Tuberculin skin test - TST - or MTb antigen responsiveness of blood cells to produce IFN-gamma - IGRA assay) whether the mycobacteria have been cleared, are still present but are controlled by an active immune response, or to predict which patients will develop active TB. Defining heterogeneity in the latent TB patients would be an important step in developing diagnostics which could detect those most at risk of developing active TB, and thus enable targeted preventive therapy. The latter situation may be determined if Latent patients have a blood transcriptional signature similar to that in Active patients. The transcriptional signature in whole blood and cell subsets from Active TB patients may also provide information as to the factors leading to immunopathogenesis, thus possibly identifying therapeutic targets. The transcriptional profile in latent TB may give information regarding protective factors controlling the infection, important for vaccine development. Finally, definition of a transcriptional signature which responds to therapy could facilitate the development of surrogate biomarkers for drug or vaccine studies.

Publication Title

An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis.

Sample Metadata Fields

Sex, Age, Race

View Samples
accession-icon GSE11908
Construction of a modular analysis framework for blood Genomics Studies
  • organism-icon Homo sapiens
  • sample-icon 271 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We designed a strategy for microarray analysis that is based on the identification of transcriptional modules formed by genes coordinately expressed in multiple disease data sets. Mapping changes in gene expression at the module level generated disease-specific transcriptional fingerprints that provide a stable framework for the visualization and functional interpretation of microarray data.

Publication Title

A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus.

Sample Metadata Fields

Sex, Age, Race

View Samples
accession-icon GSE29536
Whole Blood Transcriptional Modules generated on Illumina Hu-6 V2 Beadchips
  • organism-icon Homo sapiens
  • sample-icon 410 Downloadable Samples
  • Technology Badge IconIllumina human-6 v2.0 expression beadchip

Description

This dataset was used to establish whole blood transcriptional modules (n=260) that represent groups of coordinately expressed transcripts that exhibit altered abundance within individual datasets or across multiple datasets. This modular framework was generated to reduce the dimensionality of whole blood microarray data processed on the Illumina Beadchip platform yielding data-driven transcriptional modules with biologic meaning.

Publication Title

Interferon signature in the blood in inflammatory common variable immune deficiency.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE25742
Genome-wide profiling of whole blood from patients with defects in Toll-like receptors (TLRs) and IL-1Rs (the TIR pathway) signaling
  • organism-icon Homo sapiens
  • sample-icon 365 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

The objective of this study is to: 1) Characterize the innate immune responsiveness of patients with inborn errors in Toll-IL1 receptor signaling pathway (IRAK4, MyD88 deficiencies) compared to healthy subjects, through the analysis of blood leukocytes' transcriptional profiles after stimulation with ligands for the whole set of Toll-like receptors and IL-1Rs plus whole bacteria. 2) Understand the redundancies in TLR pathway in humans. 3) Explore the use of blood profiling approaches to assess the immune status of an individual by using Primary Immune Deficiencies as a proof of principle.

Publication Title

A narrow repertoire of transcriptional modules responsive to pyogenic bacteria is impaired in patients carrying loss-of-function mutations in MYD88 or IRAK4.

Sample Metadata Fields

Sex, Race

View Samples
accession-icon GSE46734
DALIA-1 Whole Blood Longitudinal Gene Expression
  • organism-icon Homo sapiens
  • sample-icon 330 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

The DALIA-1 trial was designed to evaluate the safety and immunogenicity of a DC-based vaccine generated by culturing blood monocytes with GM-CSF and IFN-a. DCs were pulsed for 24 hrs with the ANRS LIPO5 peptide pool and activated for the last 6 hrs with LPS. In total, 19 asymptomatic HAART-treated patients were included in the study. Microarray samples were collected in both the treatment phase and follow-up phase of the study.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE22098
Whole blood transcriptional profiles of patients with active tuberculosis (TB) and other inflammatory and infectious diseases
  • organism-icon Homo sapiens
  • sample-icon 274 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (M. tuberculosis), is a major cause of morbidity and mortality worldwide and efforts to control TB are hampered by difficulties with diagnosis, prevention and treatment. Most people infected with M. tuberculosis remain asymptomatic, termed latent TB, with a 10% lifetime risk of developing active TB disease, but current tests cannot identify which individuals will develop disease. The immune response to M. tuberculosis is complex and incompletely characterized, hindering development of new diagnostics, therapies and vaccines. The goals of this study include: 1. Identify a transcript signature for active TB in intermediate and high burden settings, correlating with radiological extent of disease and reverting to that of healthy controls following treatment; 2. Identify a specific transcript signature that discriminated active TB from other inflammatory and infectious diseases; 3. Classify TB signature using modular and pathway analysis tools.

Publication Title

An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis.

Sample Metadata Fields

Sex, Age, Race

View Samples
accession-icon GSE8650
Blood Leukocyte Microarrays to Diagnose Systemic Onset Juvenile Idiopathic Arthritis and Follow IL-1 blocade
  • organism-icon Homo sapiens
  • sample-icon 232 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Systemic onset Juvenile Idiopathic Arthritis (SoJIA) represents up to 20% of Juvenile Idiopathic Arthritis (JIA). We have previously reported that this disease is Interleukin 1 (IL1)-mediated, and that IL-1 blockade results in clinical remission in the majority of patients. The diagnosis of SoJIA, however, still relies on clinical findings as no specific diagnostic tests are available, which leads to delays in the initiation of specific therapy. To identify specific diagnostic markers, we analyzed gene expression profiles in 19 pediatric patients with SoJIA during the systemic phase of the disease (fever and/or arthritis), 25 SoJIA patients with no systemic symptoms (arthritis only or no symptoms), 39 healthy controls, 94 pediatric patients with acute viral and bacterial infections (available under GSE6269), 38 pediatric patients with Systemic Lupus Erythematosus (SLE), and 6 patients with a second IL-1 mediated disease known as PAPA syndrome. Statistical group comparison and class prediction identified genes differentially expressed in SoJIA patients compared to healthy children. These genes, however, were also changed in patients with acute infections and SLE. By performing an analysis of significance across all diagnostic groups, we generated a list of 88 SoJIA-specific genes (p<0.01 in SoJIA and >0.5 in all other groups). A subset of 12/88 genes permitted us to accurately classify an independent test set of SoJIA patients with systemic disease. We were also able to identify a group of transcripts that changed significantly in patients undergoing IL-1 blockade. Thus, analysis of transcriptional signatures from SoJIA blood leukocytes can help distinguishing this disease from other febrile illnesses and assessing response to therapy. Availability of accurate diagnostic markers for SoJIA patients may allow prompt initiation of effective therapy and prevention of long-term disabilities.

Publication Title

Blood leukocyte microarrays to diagnose systemic onset juvenile idiopathic arthritis and follow the response to IL-1 blockade.

Sample Metadata Fields

Sex, Age, Treatment, Race

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact