While it is clear that T cell derived IFN has to act on tumor stroma cells for rejection of solid tumors, it is not clear which tumor stroma cells are targets. We studied how IFN affects gene expression in tumor blood vessels in vivo. To study the effect on endothelial cells, we either used a model of ectopic IFN (MCA313 tumors) or IFN-GFP fusion protein (J558L tumors) expression in tumors, or we used T cell derived IFN in large vascularized 16.113 tumours. Tumors were grown in mice that were expressing the IFN receptor ubiquitously (J558L tumors + IFN-GFP treatment and 16.113 tumors + T cell treatment) or in some experiments the IFN-receptor was expressed exclusively in endothelial cells (MCA313 tumor + IFN treatment).
Tumour ischaemia by interferon-γ resembles physiological blood vessel regression.
Sex, Specimen part, Time
View SamplesThe zinc finger factor Insm1 is known to regulate differentiation of pancreatic cells during development, Here we show that Insm1 is essential for the maintenance of functionally mature pancreatic cells in mice.
Insm1 cooperates with Neurod1 and Foxa2 to maintain mature pancreatic β-cell function.
No sample metadata fields
View SamplesThe aim of this study is to generate and validate biomarkers to stratify patients with Barretts esophagus in terms of risk for developing cancer. We studied gene expression profiling in 69 frozen specimens, consisting of esophageal squamous epithelium from 19 healthy subjects, 20 specimens from patients with Barretts esophagus and 21 cases of esophageal adenocarcinoma, 9 cased of esophageal squamous cell carcinoma by whole genome microarray analysis. Laser capture microdissection technique was applied to procure cells from defined regions of Barretts esophagus metaplasia and esophageal adenocarcinoma. Microarray results were validated by quantitative real-time polymerase chain reaction (qRT-PCR) in an independent cohort consisting of 42 cases. Furthermore, immunohistochemistry was performed using antibodies to two selected target molecules on a third independent cohort of 36 specimens, consisting of 36 cases. A total of 1176 genes were associated significantly with esophageal adenocarcinoma. The expression pattern of a 4 gene signature with the highest discriminant score based on linear discriminant analysis (GeneSpring GX10.2), was identified and validated by qRT-PCR in independent cohort.
Wdr66 is a novel marker for risk stratification and involved in epithelial-mesenchymal transition of esophageal squamous cell carcinoma.
Specimen part
View SamplesAcute myeloid leukemia (AML) is one of the most common and deadly forms of hematopoietic malignancies. We hypothesized that microarray studies could identify aberrantly expressed genes selectively expressed in AML blasts, believing that these genes may be potential therapeutic targets for adoptive T-cell strategies
No associated publication
Specimen part, Disease
View SamplesThe aim of the study was to get insights into transcriptional alterations in bone marrow mesenchymal stromal cells derived from acute myeloid leukemia patients
Molecular alterations in bone marrow mesenchymal stromal cells derived from acute myeloid leukemia patients.
Disease
View SamplesTranscripts of 4 groups of treated and untreated mice (TG+DO1, TG, WT+DO1 and WT) were systematically investigated. Results revealed a clear separation of data obtained from AD and non-AD brains (Figure 6A), confirming previous observations (Landel et al., 2014). Furthermore, we observed that the compound DO1 alters the transcriptional profiles in brains of 5xFAD and wild-type control mice.
No associated publication
Age, Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Global target mRNA specification and regulation by the RNA-binding protein ZFP36.
Cell line, Treatment
View SamplesTristetraprolin/ZFP36/TTP and ELAVL1/HuR are two disease-relevant RNA-binding proteins (RBPs) that both interact with AU-rich sequences but have antagonistic roles. While ELAVL1 binding has been profiled in several studies, the precise in vivo binding specificity of ZFP36 has not been investigated on a global scale. We determined ZFP36 binding preferences using cross-linking and immunoprecipitation in human embyonic kidney cells and examined combinatorial regulation of AU-rich elements by ZFP36 and ELAVL1. Among the targets ZFP36 binds and negatively regulates the mRNA of genes encoding proteins necessary for immune function and cancer, and other RBPs. Using partial correlation analysis, we were able to quantify the association between ZFP36 binding sites and differential target RNA abundance from ZFP36 overexpression independent of effects from confounding features, such as 3 UTR length. We identified thousands of overlapping ZFP36 and ELAVL1 binding sites, in 1,313 genes. ZFP36 preferentially interacts with and regulates AU-rich sequences while ELAVL1 prefers predominantly U- and CU-rich sequences. RNA target specificity identified by global in vivo ZFP36-mRNA interactions were quantitatively similar to previously reported in vitro binding affinities. ZFP36 and ELAVL1 both bind an overlapping spectrum of RNA sequences, yet with differential relative preferences that dictate combinatorial regulatory potential. Our findings and methodology delineate an approach to untangle the in vivo combinatorial regulation by RNA-binding proteins.
Global target mRNA specification and regulation by the RNA-binding protein ZFP36.
Cell line, Treatment
View SamplesThe Insm1 gene encodes a zinc finger factor expressed in many endocrine organs. We show here that Insm1 is required for differentiation of all endocrine cell types in the pituitary. Thus, in Insm1 mutant mice, hormones characteristic of the different pituitary cell types (thyroid, follicle and melanocyte stimulating hormone, adrenocorticotrope hormone, growth hormone and prolactin) are absent or produced at markedly reduced levels. The differentiation deficit is accompanied by an up-regulated expression of components of the Notch signaling pathway. Further, skeletal muscle-specific genes are ectopically expressed, indicating that Insm1 blocks a muscle-specific expression program. Since Insm1 is also essential for differentiation of endocrine cells in the pancreas, intestine and adrenal gland, it is emerging as a transcription factor that acts in a pan-endocrine manner. The Insm1 factor contains a SNAG domain at its N-terminus, and we show here that the SNAG domain recruits histone modifying factors (Kdm1a, Hdac1/2 and Rcor1-3) and other proteins implicated in transcriptional regulation (Hmg20a/b and Gse1). Deletion of the SNAG domain in mice disrupted differentiation of pituitary endocrine cells, and resulted in an upregulated expression of components of the Notch signaling pathway and ectopic expression of skeletal muscle-specific genes. Our work demonstrates that Insm1 acts in the transcriptional network that controls differentiation of endocrine cells in the anterior pituitary gland, and requires the SNAG domain to exert this function in vivo.
No associated publication
Specimen part
View SamplesA characteristic feature of anaplastic large cell lymphoma (ALCL) is the significant reduction of the T-cell expression program despite its T-cell origin, a finding very similar to the loss of B-cell identity of classical Hodgkin lymphoma (cHL). Previously we demonstrated that epigenetic mechanisms are active in cHL to induce this peculiar phenotype. The results show that combined DNA demethylation and histone acetylation of T-cell lines induce an almost complete extinction of the T-cell phenotype, including the down-regulation of essential T-cell receptor signalling pathway genes such as CD3, LCK and ZAP70, as well as an up-regulation of ALCL-characteristic genes. In contrast, combined DNA demethylation and histone acetylation of ALCL cells is not able to reconstitute their T-cell phenotype. This clearly demonstrates that similar epigenetic mechanisms are active in ALCL and cHL which are responsible for the extinction of their cell type characteristic phenotype.
Histone acetylation and DNA demethylation of T cells result in an anaplastic large cell lymphoma-like phenotype.
Specimen part, Cell line, Treatment
View Samples