RNA-seq and ATAC-seq data to understand how gene regulation and chromatin accessibility correlates with function enrichment in CRISPR screen for melanoma drug resistance
Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
No associated publication
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma.
Specimen part, Treatment
View SamplesSUMMARY Despite numerous genome-wide association studies involving glioblastoma (GBM), few therapeutic targets have been identified for this disease. Using patient derived glioma sphere cultures (GSCs), we have found that a subset of the proneural (PN) GSCs undergo transition to a mesenchymal (MES) state in a TNFa/NFkB dependent manner with an associated enrichment of CD44 sub-populations and radio-resistant phenotypes. To the contrary, MES GSCs exhibit constitutive NFkB activation, CD44 enrichment and radio-resistance. Patients whose tumors exhibit a higher MES metagene, increased expression of CD44, or activated NFkB were associated with poor radiation response and shorter survival. Our results indicate that NFkB activation mediated MES differentiation and radiation resistance presents an attractive therapeutic target for GBM.
Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma.
Specimen part
View SamplesSUMMARY Terminal differentiation has been proposed as a therapeutic strategy for glioblastoma (GBM). Culturing of GBM derived tumor initiating glioma stem cells (GSCs) in fetal bovine serum containing media is a proposed mode of differentiation that is thought to induce loss of stem cell characteristics, promote neural lineage differentiation and a parallel loss of tumor initiation capacity. Here we show that GSCs retained both neurosphere formation and tumor initiation abilities after short or long term serum exposure. Under serum induced differentiating conditions, GSCs expressed both neural lineage and stem cell markers, highlighting the aberrant pseudo-differentiation state. GSCs maintained under adherent differentiating conditions continued to proliferate and initiate tumor formation with efficiencies similar to GSCs maintained under proliferating (neurosphere) conditions. Proneural (PN) GSCs under serum exposure showed an induction of mesenchymal (MES) gene expression signatures. Our data indicate that the tumor initiation ability of GSCs is independent of their differentiation state and that terminal differentiation as a therapeutic approach may not effectively negate tumorigenicity of GSCs.
No associated publication
Specimen part
View SamplesSUMMARY Terminal differentiation has been proposed as a therapeutic strategy for glioblastoma (GBM). Culturing of GBM derived tumor initiating glioma stem cells (GSCs) in fetal bovine serum containing media is a proposed mode of differentiation that is thought to induce loss of stem cell characteristics, promote neural lineage differentiation and a parallel loss of tumor initiation capacity. Here we show that GSCs retained both neurosphere formation and tumor initiation abilities after short or long term serum exposure. Under serum induced differentiating conditions, GSCs expressed both neural lineage and stem cell markers, highlighting the aberrant pseudo-differentiation state. GSCs maintained under adherent differentiating conditions continued to proliferate and initiate tumor formation with efficiencies similar to GSCs maintained under proliferating (neurosphere) conditions. Proneural (PN) GSCs under serum exposure showed an induction of mesenchymal (MES) gene expression signatures. Our data indicate that the tumor initiation ability of GSCs is independent of their differentiation state and that terminal differentiation as a therapeutic approach may not effectively negate tumorigenicity of GSCs.
No associated publication
Specimen part
View SamplesSUMMARY Despite numerous genome-wide association studies involving glioblastoma (GBM), few therapeutic targets have been identified for this disease. Using patient derived glioma sphere cultures (GSCs), we have found that a subset of the proneural (PN) GSCs undergo transition to a mesenchymal (MES) state in a TNFa/NFkB dependent manner with an associated enrichment of CD44 sub-populations and radio-resistant phenotypes. To the contrary, MES GSCs exhibit constitutive NFkB activation, CD44 enrichment and radio-resistance. Patients whose tumors exhibit a higher MES metagene, increased expression of CD44, or activated NFkB were associated with poor radiation response and shorter survival. Our results indicate that NFkB activation mediated MES differentiation and radiation resistance presents an attractive therapeutic target for GBM.
Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma.
Specimen part, Treatment
View SamplesSUMMARY Terminal differentiation has been proposed as a therapeutic strategy for glioblastoma (GBM). Culturing of GBM derived tumor initiating glioma stem cells (GSCs) in fetal bovine serum containing media is a proposed mode of differentiation that is thought to induce loss of stem cell characteristics, promote neural lineage differentiation and a parallel loss of tumor initiation capacity. Here we show that GSCs retained both neurosphere formation and tumor initiation abilities after short or long term serum exposure. Under serum induced differentiating conditions, GSCs expressed both neural lineage and stem cell markers, highlighting the aberrant pseudo-differentiation state. GSCs maintained under adherent differentiating conditions continued to proliferate and initiate tumor formation with efficiencies similar to GSCs maintained under proliferating (neurosphere) conditions. Proneural (PN) GSCs under serum exposure showed an induction of mesenchymal (MES) gene expression signatures. Our data indicate that the tumor initiation ability of GSCs is independent of their differentiation state and that terminal differentiation as a therapeutic approach may not effectively negate tumorigenicity of GSCs.
No associated publication
Specimen part
View SamplesDuring development, lineage specification is controlled by several signaling pathways involving various transcription factors (TFs). Here, we studied the RE1-silencing transcription factor (REST) and identified an important role of this TF in cardiac differentiation. Using mouse embryonic stem cells (ESC) to model development, we analyzed the effect of REST knock-out on the ability to these cells to differentiate into the cardiac lineage. Detailed analysis of specific lineage markers expression showed selective down-regulation of endoderm markers in REST-null cells, thus contributing to a loss of cardiogenic signals.
A Role for RE-1-Silencing Transcription Factor in Embryonic Stem Cells Cardiac Lineage Specification.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm.
Cell line, Treatment
View Samples