refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 28 results
Sort by

Filters

Technology

Platform

accession-icon GSE43475
UNRAVELING A NOVEL TRANSCRIPTION FACTOR CODE INDUCTIVE FOR THE HUMAN ARTERIAL-SPECIFIC ENDOTHELIAL CELL SIGNATURE
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Endothelial cells (EC) lining arteries and veins have distinct molecular and functional signatures. The (epi)genetic regulatory mechanisms underlying this heterogeneity in human EC are incompletely understood. Using genome-wide microarray screening we established a specific fingerprint of freshly isolated arterial (HUAEC) and venous EC (HUVEC) from human umbilical cord comprising 64 arterial and 12 venous genes, representing distinct functions and pathways. Among the arterial genes were 8 transcription factors, including HEY2, a downstream target of Notch signaling and the current golden standard pathway for arterial EC specification. Short-term culture of HUAEC or HUVEC abrogated differential gene expression resulting in a default state. Erasure of arterial gene expression was at least in part due to loss of canonical Notch activity and HEY2 expression. Notably, nCounter analysis revealed that restoring HEY2 expression or Delta-like 4 (Dll4)-induced Notch signaling in cultured HUVEC or HUAEC only partially reinstated the arterial EC gene signature while combined overexpression of the 8 transcription factors restored this fingerprint much more robustly. Each transcription factor had a different impact on gene regulation, with some stimulating only few and others boosting a large proportion of arterial genes. Interestingly, although there was some overlap and cross-regulation, the transcription factors largely complemented each other in regulating the arterial EC gene profile. Thus, our study showed that Notch signaling determines only part of the arterial EC signature and identified additional novel and complementary transcriptional players in the complex regulation of human arteriovenous EC identity

Publication Title

Unraveling a novel transcription factor code determining the human arterial-specific endothelial cell signature.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26807
The HDAC inhibitor panobinostat (LBH589) inhibits Acute Lymphoblastic leukemia (ALL) in vitro and in vivo in a new characterized human ALL mice model
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mapping 250K Sty2 SNP Array (mapping250ksty), Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Preclinical activity of LBH589 alone or in combination with chemotherapy in a xenogeneic mouse model of human acute lymphoblastic leukemia.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE46272
PINT lincRNA connects the p53 pathway with epigenetic silencing by the Polycomb Repressive Complex 2
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Pint lincRNA connects the p53 pathway with epigenetic silencing by the Polycomb repressive complex 2.

Sample Metadata Fields

Specimen part, Disease, Cell line, Treatment, Subject

View Samples
accession-icon GSE66724
Hsp70 protects from stroke in atrial fibrillation patients by preventing thrombosis with no increased bleeding risk
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Atrial fibrillation (AF) is a major risk factor for cardioembolic stroke. Anticoagulant drugs are effective in preventing AF-related stroke. However, the high frequency of anticoagulant-associated major bleeding is a major concern particularly when antiplatelet treatment is simultaneously administered. Here, microarray analysis in peripheral blood cells in eight patients with AF and stroke and eight AF subjects without stroke identified a stroke related gene expression pattern. HSPA1B, which encodes for heat-shock protein 70 kDa (Hsp70), was the most differentially expressed gene. This gene was downregulated in stroke subjects, a finding confirmed further in an independent AF cohort of 200 individuals. Hsp70 knock-out (KO) mice subjected to different thrombotic challenges developed thrombosis significantly earlier than their wild-type (WT) counterparts.

Publication Title

Hsp70 protects from stroke in atrial fibrillation patients by preventing thrombosis without increased bleeding risk.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE58528
Genomewide analysis of the human p53 transcriptional network unveils a lncRNA tumor suppressor signature
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20), Illumina Genome Analyzer

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide analysis of the human p53 transcriptional network unveils a lncRNA tumour suppressor signature.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE81602
A long noncoding RNA regulates sister chromatid cohesion
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A Long Noncoding RNA Regulates Sister Chromatid Cohesion.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE78932
Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs with in vivo activity in hematological malignancies
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st), Illumina HiSeq 2000

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs in hematological malignancies.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE26790
The HDAC inhibitor panobinostat (LBH589) inhibits Acute Lymphoblastic leukemia (ALL) in vitro and in vivo in a new characterized human ALL mice model (TOM-1 and MOLT-4)
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mapping 250K Sty2 SNP Array (mapping250ksty), Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Histone deacetylases (HDACs) have been identified as therapeutic targets due to regulatory function in DNA structure and organization. We have analyzed the role of the LBH589, a novel pan inhibitor of class I and II HDACs, in Acute Lymphoblastic Leukemia. In vitro, LBH589 was shown to induce a dose dependent antiproliferative and apoptotic effect which was associated with an increase in the acetylation of H3 and H4 histone acetylation which was uniformly in every genetic subgroup of ALL. In vivo administration of LBH589 in BALB/c-RAG2-/-c-/- mice in which T and B-cell leukemic cell lines were injected induced a significant reduction in tumor growth (TOM-1, p<0.01 and MOLT-4 p<0.05). Leukemic cells from patients were employed to establish a xenograft model of human leukemia in BALB/c-RAG2-/-c-/- mice and further transplanted in consecutive generations of mice. Treatment of these xenografts with LBH589 induced an increase in the acetylation of H3 and H4 and prolonged the survival of mice in comparison with the animals treated with Vincristine and Dexametasone (p<0.05) and this effect was significantly higher when LBH589 was combined with Vincristine and Dexametasone (p<0.001). Our results that the use of LBH589 in combination with standard chemotherapy represents an attractive option for treatment of patients with ALL.

Publication Title

Preclinical activity of LBH589 alone or in combination with chemotherapy in a xenogeneic mouse model of human acute lymphoblastic leukemia.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE46247
PINT lincRNA connects the p53 pathway with epigenetic silencing by the Polycomb Repressive Complex 2 (MEF cells)
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

It has been recently shown that the transcription factor p53 induces the expression of multiple lincRNAs. However, relatively little is known about the role that lincRNAs play in this pathway. Here we characterize a lincRNA named PINT (p53 Induced Noncoding Transcript). We show that PINT is a ubiquitously expressed lincRNA that is finely regulated by p53. In mouse cells, PINT promotes cell proliferation and survival by regulating the expression of genes of TGF-beta, MAPK and p53 pathways. PINT is a nuclear lincRNA that directly interacts with Polycomb Repressive Complex 2 (PRC2), being required for PRC2 targeting of specific genes for repression. Furthermore, PINT functional activity is dependent on PRC2 expression, representing a connection between the p53 pathway and epigenetic regulation by PRC2. We have also identified PINT human ortholog (hPINT), which presents suggestive analogies with the mouse lincRNA. hPINT is similarly regulated by p53, and its expression correlates significantly with the same cellular pathways as the mouse ortholog, including the p53 pathway. Interestingly, hPINT is significantly downregulated in colon cancer, representing a novel tumor suppressor candidate. Our results not only help our understanding of the role of p53 and lincRNAs in cancer, but also contribute to the open debate regarding the utility of mouse models for the study of lincRNAs.

Publication Title

Pint lincRNA connects the p53 pathway with epigenetic silencing by the Polycomb repressive complex 2.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE58409
Genomewide analysis of the human p53 transcriptional network unveils a lncRNA tumor suppressor signature (expression)
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer, Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

We report the application of high-throughput sequencing to performed the p53 regulated trancriptome in HCT116 colon cancer cells treated with the DNA damage 5FU. To study the direct targets of p53 we performed ChIP-seq to deterrmined the p53 biding sites and associated with the expression levels. With this study we identified the new genomic regions regulated by p53 and with special attention in those regions that are significally expressed by DNA damage and and are non- coding.

Publication Title

Genome-wide analysis of the human p53 transcriptional network unveils a lncRNA tumour suppressor signature.

Sample Metadata Fields

Cell line, Treatment

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact