Cartilage plays a fundamental role in the development of the human skeleton. Early in embryogenesis, mesenchymal cells condense and differentiate to chondrocytes to shape the early skeleton. Subsequently, the cartilage anlagen differentiate to form the growth plates, which are responsible for linear bone growth, and the articular chondrocytes, which facilitate joint function. However, despite the multiplicity of roles of cartilage during human fetal life, surprisingly little is known about its transcriptome. To address this, a whole genome microarray expression profile was generated using RNA isolated from 18-22 week human distal femur fetal cartilage and compared with a database of control normal human tissues aggregated at UCLA, termed CELSIUS. From the wealth of data, 161 cartilage-selective genes were identified, defined as genes significantly expressed in cartilage with low expression and little variation across a panel of 34 non-cartilage tissues. Among these 161 genes were cartilage-specific genes such as collagen genes and 25 genes which have been associated with skeletal phenotypes in humans and/or mice. Many of the other cartilage-selective genes do not have established roles in cartilage or are novel, unannotated genes. Quantitative RT-PCR confirmed the unique pattern of gene expression observed by microarray analysis. Defining the gene expression pattern for cartilage has identified new genes that may contribute to human skeletogenesis as well as provided further candidate genes for skeletal dysplasias. The data suggest that fetal cartilage is a complex and transcriptionally active tissue and demonstrate that the set of genes selectively expressed in the tissue has been greatly underestimated.
Cartilage-selective genes identified in genome-scale analysis of non-cartilage and cartilage gene expression.
No sample metadata fields
View SamplesTo assess how the TOX3 nuclear protein can modulate gene expression in luminal epithelial cells, MCF7 cells were transfected with a TOX3 expression vector or vector control. In both instances, GFP was coexpressed, allowing isolation of transfected cells by flow cytometry before transcriptome analysis. Experiments were carried out under estrogen depleted conditions, and cells isolated 48 hours after transfection.
TOX3 is expressed in mammary ER(+) epithelial cells and regulates ER target genes in luminal breast cancer.
Cell line
View SamplesTL1A contributes to the pathogenesis of several chronic inflammatory diseases, including Inflammatory Bowel Diseases by enhancing TH1, TH17, and TH2 responses. TL1A mediates a strong co-stimulation of these TH subsets particularly of mucosal CCR9+ T cells. However, the signaling pathways that TL1A induces in different TH subsets are incompletely understood. Here, we investigated the function of TL1A on human TH17 cells. TL1A together with TGF- IL-6, and IL-23 enhanced the secretion of IL-17 and IFN- from human CD4+ memory T cells. TL1A induced the expression of the transcription factors BATF and T-bet that correlated with the secretion of IL-17 and IFN-. In contrast, TL1A alone induced high levels of IL-22 in memory CD4+ T cells and committed TH17 cells. However, TL1A did not enhance expression of IL-17A in TH17 cells. Expression of the transcription factor aryl hydrocarbon receptor that regulates expression of IL-22 was not affected by TL1A. We performed transcriptome analysis of TH17 cells to determine genes that are transcriptionally regulated by TL1A. transcriptome analysis revealed increased expression of IL-9 in response to TL1A.
The TNF family member TL1A induces IL-22 secretion in committed human T<sub>h</sub>17 cells via IL-9 induction.
Specimen part
View SamplesHuman Glioblastoma Multiforme tumors taken before dendritic cell vaccination, the recurrent tumors taken after vaccination and control GBM tumors from non vaccinated patients.
T cells enhance stem-like properties and conditional malignancy in gliomas.
No sample metadata fields
View SamplesTreatment of prostate cancer by hormone suppression leads to the appearance of aggressive variants with variable or no dependence on the androgen receptor. Here we show that the developmental transcription factor, ONECUT2, is a master regulator of the AR network that is highly active in castration-resistant prostate cancer (CRPC).
ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis.
Cell line, Treatment
View SamplesRNA was extracted from the tumors that grew in the brains of mice that were injected with the GL26 cell line. RNA from GL26 cells was also taken. The chip used for all was an affymetrix mouse genome chip (GPL1261). This is the mouse model compliment to a human experiment in which the human chip was used for GBM tumors.
No associated publication
No sample metadata fields
View SamplesTo explore global molecular changes in smooth muscle in response to PDGFR activation, primary human bladder smooth muscle cells were treated with 1 nM PDGF-BB (hereafter PDGF) for 0, 4 or 24 h. Total RNA were prepared, and analyzed using expression profiling, and subjected to bioinformatic and functional interrogation.
Integration of proteomic and transcriptomic profiles identifies a novel PDGF-MYC network in human smooth muscle cells.
Specimen part
View SamplesComparative analysis of regulation of gene expression by Blimp1 in regulatory and effector CD4+ T cells. The hypothesis tested in the present study was that Blimp1 differentially regualte gene expression in different T cell subsets. Results provide important information of mechanisms underlying regulation of gene expression by Blimp1 in T cells
No associated publication
Specimen part
View SamplesTo evaluate the specificity for inhibition of expression of OC2 target genes we generated microarray data of 22Rv1 cells treated for 4, 6 and 16 hours with the small molecule inhibitor.
ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis.
Cell line, Treatment, Time
View SamplesWe compare transcriptomic profiles of human induced pluripotent stem cells (iPSCs), motor neurons (MNs) in vitro differentiated from iPSCs or human ESCs containing a HB9::GFP reporter for MNs, and human fetal spinal cords.
ALS disrupts spinal motor neuron maturation and aging pathways within gene co-expression networks.
Sex
View Samples