refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 109 results
Sort by

Filters

Technology

Platform

accession-icon GSE21254
Classical Hodgkin lymphoma shows epigenetic features of an abortive plasma cellular differentiation
  • organism-icon Homo sapiens
  • sample-icon 41 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Classical Hodgkin's lymphoma shows epigenetic features of abortive plasma cell differentiation.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE8388
Epigenetic upregulation of B-cell inappropriate genes induces extinction of B-cell program in classical Hodgkin lymphoma
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

A unique feature of the tumour cells (Hodgkin/Reed-Sternberg (HRS)) of classical Hodgkin lymphoma (cHL) is the loss of their B-cell phenotype despite their B-cell origin. Several lines of evidence suggest that epigenomic events, especially promoter DNA-methylation, are involved in this silencing of many B-cell associated genes. Here we show that DNA-demethylation alone or in conjunction with histone-acetylation is not able to reconstitute the B-cell gene expression program in cultured HRS cells. Instead, combined DNA-demethylation and histone-acetylation of B cells induce a nearly complete extinction of their B-cell expression program and a tremendous up-regulation of numerous cHL characteristic genes including key players such as Id2 known to be involved in the suppression of the B-cell phenotype. Since the up-regulation of cHL characteristic genes and the extinction of the B-cell expression program occurred simultaneously, epigenetic changes may also be responsible for the malignant transformation of cHL. The epigenetic up-regulation of cHL characteristic genes thus play - in addition to promoter DNA-hypermethylation of B-cell associated genes a pivotal role for the reprogramming of HRS cells and explain why DNA-demethylation alone is unable to reconstitute the B-cell expression program in HRS cells.

Publication Title

Histone acetylation and DNA demethylation of B cells result in a Hodgkin-like phenotype.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE21252
Classical Hodgkin lymphoma shows epigenetic features of an abortive plasma cellular differentiation: expression of A/T-treated vs. untreated B-cell lines
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Background

Publication Title

Classical Hodgkin's lymphoma shows epigenetic features of abortive plasma cell differentiation.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE30726
Deep sequencing of MYC DNA-binding sites in Burkitt's lymphoma
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Background: MYC is a transcription factor encoded by the c-MYC gene (thereafter termed MYC). MYC is key transcription factor involved in many central cellular processes including ribosomal biogenesis. MYC is overexpressed in the majority of human tumours including aggressive B-cell lymphoma especially Burkitt's lymphoma. Although Burkitt's lymphoma is a highlight example for MYC overexpression due to a chromosomal translocation, no global analysis of MYC binding sites by chromatin immunoprecipitation (ChIP) followed by global next generation sequencing (ChIP-Seq) has been conducted so far in Burkitt's lymphoma.

Publication Title

Deep sequencing of MYC DNA-binding sites in Burkitt lymphoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE25585
Circadian transcriptional profiling of peritoneal macrophages
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

In the immune system various parameters and immune functions are controlled by the circadian system. To investigate molecular mechanisms that link the circadian clock and the immune system we analyzed the transcriptom of peritoneal macrophages from mice collected in a time course for two consecutive days. We found that more than 8% of expressed genes are under circadian control including many important regulators in pathogen recognition, signal transduction and cytokine secretion.

Publication Title

A circadian clock in macrophages controls inflammatory immune responses.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE21251
Classical Hodgkin lymphoma shows epigenetic features of an abortive plasma cellular differentiation: expression of Hodgkin vs. B-cell lines
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Background

Publication Title

Classical Hodgkin's lymphoma shows epigenetic features of abortive plasma cell differentiation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE28079
Classical Hodgkin lymphoma shows epigenetic features of an abortive plasma cellular differentiation: expression of PCM vs. B-cell lines
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Background

Publication Title

Classical Hodgkin's lymphoma shows epigenetic features of abortive plasma cell differentiation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE21337
Genome-wide analysis of alternative splicing points to novel leukemia-relevant genes in acute myeloid leukemia.
  • organism-icon Homo sapiens
  • sample-icon 64 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

Alternative mRNA splicing represents an effective mechanism of regulating gene function and is a key element to increase the coding capacity of the human genome. Today, an increasing number of reports illustrates that aberrant splicing events are common and functionally important for cancer development. However, more comprehensive analyses are warranted to get novel insights into the biology underlying malignancies like e.g. acute myeloid leukemia (AML). Here, we performed a genome-wide screening of splicing events in AML using an exon microarray platform. We analyzed complex karyotype and core binding factor (CBF) AML cases (n=64) in order to evaluate the ability to detect alternative splicing events distinguishing distinct leukemia subgroups. Testing different commercial and open source software tools to compare the respective AML subgroups, we could identify a large number of potentially alternatively spliced transcripts with a certain overlap of the different approaches. Selected candidates were further investigated by PCR and sequence analysis: out of 24 candidate genes studied, we could confirm alternative splice forms in 8 genes of potential pathogenic relevance, such as PRMT1 regulating transcription through histone methylation and participating in DNA damage response, and PTPN6, which encodes for a negative regulator of cell cycle control and apoptosis. In summary, this first large Exon microarray based study demonstrates that transcriptome splicing analysis in AML is feasible but challenging, in particular with regard to the currently available software solutions. Nevertheless, our results show that alternatively spliced candidate genes can be detected, and we provide a guide how to approach such analyses.

Publication Title

A robust estimation of exon expression to identify alternative spliced genes applied to human tissues and cancer samples.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE93611
Time-course expression data from HEK293RAF1:ER cells stimulated with 4OHT, U0126, CYHX, ActD, EGF, FGF, or IGF and labelled with 4SU
  • organism-icon Homo sapiens
  • sample-icon 41 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

An immediate-late gene expression module decodes ERK signal duration.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE4698
Molecular characterization of very early relapsed childhood ALL
  • organism-icon Homo sapiens
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Purpose: In childhood acute lymphoblastic leukemia (ALL), approximately 25% of patients suffer from relapse. In recurrent disease, despite intensified therapy, overall cure rates of 40% remain unsatisfactory and survival rates are particularly poor in certain subgroups. The probability of long-term survival after relapse is predicted from well-established prognostic factors, i. e. time and site of relapse, immunophenotype and minimal residual disease. However, the underlying biological determinants of these prognostic factors remain poorly understood.

Publication Title

No associated publication

Sample Metadata Fields

Sex

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact