refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3669 results
Sort by

Filters

Technology

Platform

accession-icon GSE89749
Integrative genomic and epigenetic analysis in cholangiocarcinoma
  • organism-icon Homo sapiens
  • sample-icon 120 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE89748
Integrative genomic and epigenetic analysis in cholangiocarcinoma [batch2]
  • organism-icon Homo sapiens
  • sample-icon 72 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Analysis of gene expression in cholangiocarcinoma patients.

Publication Title

Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE89747
Integrative genomic and epigenetic analysis in cholangiocarcinoma [batch1]
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Analysis of gene expression in cholangiocarcinoma patients.

Publication Title

Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE104301
Dual Blockade of the Lipid Kinase PIP4Ks and Mitotic Pathways Leads to Cancer-selective Lethality
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

We discover drugs with a dual-inhibitory mechanism provides a unique pharmacological strategy against cancer and evidence of cross-activation between the Ras/Raf/MEK/ERK and PI3K/AKT/mTOR pathways via a RasPIK3IP1PI3K signaling network

Publication Title

Dual blockade of the lipid kinase PIP4Ks and mitotic pathways leads to cancer-selective lethality.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE35809
Gastric Cancer Subtyping (Australian Patient Cohort)
  • organism-icon Homo sapiens
  • sample-icon 70 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Genome-wide mRNA expression profiles of 70 primary gastric tumors from the Australian patient cohort. Like many cancers, gastric adenocarcinomas (gastric cancers) show considerable heterogeneity between patients. Thus, there is intense interest in using gene expression profiles to discover subtypes of gastric cancers with particular biological properties or therapeutic vulnerabilities.

Publication Title

Comprehensive genomic meta-analysis identifies intra-tumoural stroma as a predictor of survival in patients with gastric cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34942
Gastric cancer subtyping (Singapore Patient Cohort, batch B)
  • organism-icon Homo sapiens
  • sample-icon 53 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Genome-wide mRNA expression profiles of 56 primary gastric tumors from the Singapore patient cohort, batch B. Like many cancers, gastric adenocarcinomas (gastric cancers) show considerable heterogeneity between patients. Thus, there is intense interest in using gene expression profiles to discover subtypes of gastric cancers with particular biological properties or therapeutic vulnerabilities.

Publication Title

Regulatory crosstalk between lineage-survival oncogenes KLF5, GATA4 and GATA6 cooperatively promotes gastric cancer development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE30274
The histotype-specific copy-number landscape of ovarian cancer (expression Japan)
  • organism-icon Homo sapiens
  • sample-icon 55 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Ovarian cancer is characterized by multiple structural aberrations; most are passenger alterations which do not confer tumor growth. Like many cancers, it is a heterogeneous disease and till date, the histotype-specific copy number landscape has been difficult to elucidate. To dissect the heterogeneity of ovarian cancer and understand the pathogenesis of its various histotypes, we developed an in silico hypothesis-driven workflow to identify histotype-specific copy number aberrations across multiple datasets of epithelial ovarian cancer. In concordance with previous studies on global copy number changes, our study showed similar alterations. However, when the landscape was de-convoluted into histotypes, distinct alterations were observed. We report here a comprehensive histotype-specific copy number landscape of ovarian cancer and showed that there is genomic diversity between the histotypes; some involving well known cancer genes and some novel potential driver genes. Besides preferential occurrence of alterations in some histotypes, opposite trends of alteration were observed; such as ERBB2 amplification in mucinous but deletion in serous tumors. The landscape highlights the need for identifying histotype-specific aberrations in ovarian cancer and present potential to tailor management of ovarian cancer based on molecular signature of histotypes.

Publication Title

Histotype-specific copy-number alterations in ovarian cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE51706
Integrative study of cooperative lineage-survival oncogenes in gastric cancer
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Regulatory crosstalk between lineage-survival oncogenes KLF5, GATA4 and GATA6 cooperatively promotes gastric cancer development.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE30284
The histotype-specific copy-number landscape of ovarian cancer (expression Taiwan)
  • organism-icon Homo sapiens
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Ovarian cancer is characterized by multiple structural aberrations; most are passenger alterations which do not confer tumor growth. Like many cancers, it is a heterogeneous disease and till date, the histotype-specific copy number landscape has been difficult to elucidate. To dissect the heterogeneity of ovarian cancer and understand the pathogenesis of its various histotypes, we developed an in silico hypothesis-driven workflow to identify histotype-specific copy number aberrations across multiple datasets of epithelial ovarian cancer. In concordance with previous studies on global copy number changes, our study showed similar alterations. However, when the landscape was de-convoluted into histotypes, distinct alterations were observed. We report here a comprehensive histotype-specific copy number landscape of ovarian cancer and showed that there is genomic diversity between the histotypes; some involving well known cancer genes and some novel potential driver genes. Besides preferential occurrence of alterations in some histotypes, opposite trends of alteration were observed; such as ERBB2 amplification in mucinous but deletion in serous tumors. The landscape highlights the need for identifying histotype-specific aberrations in ovarian cancer and present potential to tailor management of ovarian cancer based on molecular signature of histotypes.

Publication Title

Histotype-specific copy-number alterations in ovarian cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE51704
Gene expression profiling of KLF5, GATA4 and GATA6 knock down in YCC3/AGS/KATOIII cell lines
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Three transcription factors KLF5, GATA4 and GATA6 are recurrently amplified in multiple gastric cancer cohorts, representing one type of lineage-survival oncogenes in gastric cancer. ChIP-Seq analysis of these three factors in multiple cell lines revealed that significant number of genomic sites are co-occupied by KLF5 and GATA4 and/or GATA6. Integrative analysis of ChIP-Seq and gene expression identified several targets of the three transcription factors in both cell lines and primary tumors, including HNF4A. These results suggest that KLF5, GATA4 and GATA6 interact and co-operate to regulate HNF4A and other genes to promote tumorigenesis in gastric cancer.

Publication Title

Regulatory crosstalk between lineage-survival oncogenes KLF5, GATA4 and GATA6 cooperatively promotes gastric cancer development.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact