Brain development requires a massive increase in brain lipogenesis and accretion of the essential omega-3 fatty acid docosahexaenoic acid (DHA). Brain acquisition of DHA is primarily mediated by the transporter Major Facilitator Superfamily Domain containing 2a (Mfsd2a) expressed in the endothelium of the blood-brain barrier. Mfsd2a transports DHA and other polyunsaturated fatty acids esterified to lysophosphatidylcholine (LPC-DHA). However, the function of Mfsd2a and DHA in brain development is incompletely understood. Using vascular endothelial-specific (2aECKO) and inducible vascular endothelial-specific (2aiECKO) deletion of Mfsd2a in mice, we found Mfsd2a to be uniquely required postnatally at the blood-brain barrier for normal brain growth and DHA accretion, with DHA deficiency preceding the onset of microcephaly. Gene expression profiling analysis of these DHA deficient brains indicated that Srebp-1 and Srebp-2 pathways were highly elevated.
The lysolipid transporter Mfsd2a regulates lipogenesis in the developing brain.
Specimen part
View SamplesEye photoreceptor membrane discs in outer rod segments are highly enriched in the visual pigment rhodopsin and the omega-3 fatty acid docosahexaenote (DHA). The eye acquires DHA from blood, but transporters for DHA uptake across the blood-retinal barrier (BRB) or retinal pigment epithelium have not been identified. Mfsd2a is a newly described sodium-dependent lysophosphatidylcholine symporter expressed at the BRB.
Mfsd2a Is a Transporter for the Essential ω-3 Fatty Acid Docosahexaenoic Acid (DHA) in Eye and Is Important for Photoreceptor Cell Development.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma.
Specimen part
View SamplesAnalysis of gene expression in cholangiocarcinoma patients.
Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma.
Specimen part
View SamplesAnalysis of gene expression in cholangiocarcinoma patients.
Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma.
Specimen part
View SamplesWe discover drugs with a dual-inhibitory mechanism provides a unique pharmacological strategy against cancer and evidence of cross-activation between the Ras/Raf/MEK/ERK and PI3K/AKT/mTOR pathways via a RasPIK3IP1PI3K signaling network
Dual blockade of the lipid kinase PIP4Ks and mitotic pathways leads to cancer-selective lethality.
Specimen part, Treatment
View SamplesGenome-wide mRNA expression profiles of 70 primary gastric tumors from the Australian patient cohort. Like many cancers, gastric adenocarcinomas (gastric cancers) show considerable heterogeneity between patients. Thus, there is intense interest in using gene expression profiles to discover subtypes of gastric cancers with particular biological properties or therapeutic vulnerabilities.
Comprehensive genomic meta-analysis identifies intra-tumoural stroma as a predictor of survival in patients with gastric cancer.
Specimen part
View SamplesGenome-wide mRNA expression profiles of 56 primary gastric tumors from the Singapore patient cohort, batch B. Like many cancers, gastric adenocarcinomas (gastric cancers) show considerable heterogeneity between patients. Thus, there is intense interest in using gene expression profiles to discover subtypes of gastric cancers with particular biological properties or therapeutic vulnerabilities.
Regulatory crosstalk between lineage-survival oncogenes KLF5, GATA4 and GATA6 cooperatively promotes gastric cancer development.
Specimen part
View SamplesOvarian cancer is characterized by multiple structural aberrations; most are passenger alterations which do not confer tumor growth. Like many cancers, it is a heterogeneous disease and till date, the histotype-specific copy number landscape has been difficult to elucidate. To dissect the heterogeneity of ovarian cancer and understand the pathogenesis of its various histotypes, we developed an in silico hypothesis-driven workflow to identify histotype-specific copy number aberrations across multiple datasets of epithelial ovarian cancer. In concordance with previous studies on global copy number changes, our study showed similar alterations. However, when the landscape was de-convoluted into histotypes, distinct alterations were observed. We report here a comprehensive histotype-specific copy number landscape of ovarian cancer and showed that there is genomic diversity between the histotypes; some involving well known cancer genes and some novel potential driver genes. Besides preferential occurrence of alterations in some histotypes, opposite trends of alteration were observed; such as ERBB2 amplification in mucinous but deletion in serous tumors. The landscape highlights the need for identifying histotype-specific aberrations in ovarian cancer and present potential to tailor management of ovarian cancer based on molecular signature of histotypes.
Histotype-specific copy-number alterations in ovarian cancer.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Regulatory crosstalk between lineage-survival oncogenes KLF5, GATA4 and GATA6 cooperatively promotes gastric cancer development.
Specimen part, Cell line
View Samples