Retinoic acid (RA) is an important developmental signaling molecule responsible for the patterning of multiple vertebrate tissues. RA is also a potent teratogen, causing multi-organ birth defects in humans. Endogenous RA levels must therefore be tightly controlled in the developing embryo.
No associated publication
Specimen part
View SamplesKLRK1 induces expression of Sox9
No associated publication
Specimen part, Cell line
View SamplesGlioblastomas (GBMs) are divided into CpG Island Methylator Phenotype (CIMP) and non-CIMP tumors. Non-CIMP GBMs derive from cells with non-disjunction of chromosome (chr7) and chromosome 10 (chr10), resulting in chr7 gain and chr10 loss, while CIMP GBMs have mutations in isocitrate dehydrogenase 1 or 2 (IDH1/2). Gain of chr7 is largely driven by PDGFA, but other genes on chr7 are likely to contribute to fitness gains and aggressiveness of these GBMs. We computationally investigated genes on chr7 whose gene expression correlated with survival, identifying HOXA5 as a potential driver of proneural gliomagenesis. Using a combination of human GBM cells and mouse PDGF-driven gliomas, we showed that HOXA5 drives increased proliferation and radiation resistance in culture and in vivo. These phenotypes appear to be in part due to effects on p53 and other apoptosis-related genes.
Increased <i>HOXA5</i> expression provides a selective advantage for gain of whole chromosome 7 in IDH wild-type glioblastoma.
Disease
View Samples