Previously published data suggested some redundant functions between HDAC1 and HDAC2 in mouse. To test this hypothesis, we used microarrays to have a genome wide analysis at the transcription level of primary MEFs lacking HDAC1, HDAC2.
Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression.
Sex
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptional code and disease map for adult retinal cell types.
Specimen part
View SamplesBrain circuits are assembled from a large variety of morphologically and functionally diverse cell types. It is not known how the intermingled cell types of individual brain regions differ in their expressed genomes. Here we describe an atlas of cell type transcriptomes of the adult retina. We found that each adult cell type expresses a specific set of genes, including a unique set of transcription factors, forming a barcode for cell identity. Cell type transcriptomes carry enough information to categorize cells into corresponding morphological classes and types. Surprisingly, several barcode genes are eye disease-associated genes that we demonstrate to be specifically expressed not only in photoreceptors but also in particular retinal circuit elements such as inhibitory neurons as well as in retinal microglia. Our data suggest that distinct cell types of individual brain regions are characterized by marked differences in their expressed genomes.
Transcriptional code and disease map for adult retinal cell types.
Specimen part
View SamplesDeletion of the RPS6 gene in mouse liver results in the inhibition of 40S ribosome biogenesis and the failure of hepatocytes to enter S-phase following partial hepatectomy. This microarray experiment was designed to assess the effects of RPS6 deletion on the expression of genes involved in liver regeneration following partial hepatectomy.
No associated publication
Sex, Age
View SamplesLoss and heterozygosity for NDR1 predisposes mice to T-cell lymphoma development. To analyze mechanisms of tumor development in these mice chemically (ENU)-induced tumors were collected and RNA was extracted.
No associated publication
Sex, Specimen part, Disease, Treatment
View SamplesBrain circuits are assembled from a large variety of morphologically and functionally diverse cell types. It is not known how the intermingled cell types of individual brain regions differ in their expressed genomes. Here we describe an atlas of cell type transcriptomes of the adult retina. We found that each adult cell type expresses a specific set of genes, including a unique set of transcription factors, forming a barcode for cell identity. Cell type transcriptomes carry enough information to categorize cells into corresponding morphological classes and types. Surprisingly, several barcode genes are eye disease-associated genes that we demonstrate to be specifically expressed not only in photoreceptors but also in particular retinal circuit elements such as inhibitory neurons as well as in retinal microglia. Our data suggest that distinct cell types of individual brain regions are characterized by marked differences in their expressed genomes.
Transcriptional code and disease map for adult retinal cell types.
Specimen part
View SamplesThe thymus constitutes the primary lymphoid organ for the majority of T cells. The phosphatidyl-inositol 3 kinase (PI3K) signaling pathway is involved in lymphoid development. Defects in single components of this pathway prevent thymocytes from progressing beyond early T cell developmental stages. Protein kinase B (PKB) is the main effector of the PI3K pathway. To determine whether PKB mediates PI3K signaling in early T cell development, we characterized PKB knockout thymi. Our results reveal a significant thymic hypocellularity in PKBalpha-/- neonates and an accumulation of early thymocyte subsets in PKBalpha-/- adult mice. The latter finding is specifically attributed to the lack of PKBalpha within the lymphoid component of the thymus. Microarray analyses show that the absence of PKBalpha in early thymocyte subsets modifies the expression of genes known to be involved in pre-TCR signaling, in T cell activation, and in the transduction of interferon-mediated signals. This report highlights the specific requirements of PKBalpha for thymic development.
Deletion of PKBalpha/Akt1 affects thymic development.
Sex, Age, Specimen part
View SamplesRNA-binding proteins (RBPs) are critical regulators of gene expression and elucidating the interactions of RBPs with their RNA targets is necessary to understand how combinations of RBPs control transcriptome expression. The Quaking-related (QR) sub-family of STAR domain RBPs includes developmental regulators and tumor suppressors such as C. elegans GLD-1, which functions as a master regulator of germ line development. To understand how GLD-1 interacts with the transcriptome, we identified GLD-1 associated mRNAs by a ribonomic approach. The scale of GLD-1 mRNA interactions allowed us to determine rules governing GLD-1 target selection and to derive a predictive model where GLD-1 association with mRNA is based on the number and strength of 7-mer GLD-1 binding elements (GBEs) within UTRs. GLD-1/mRNA interactions were quantified, and predictions were verified both in vitro and in live animals, including by transplantation experiments where weak and strong GBEs imposed translational repression of increasing strength on a non-target mRNA.Importantly, this study provides a unique quantitative picture of how an RBP interacts with its mRNA targets. As combinatorial regulation by multiple RBPs is thought to regulate gene expression, quantification of RBP/mRNA interactions should be a way to predict and potentially modify biological outcomes of complex posttranscriptional regulatory networks, and our analysis suggests that such an approach is possible.
A quantitative RNA code for mRNA target selection by the germline fate determinant GLD-1.
Specimen part
View SamplesWe used FACS isolated RD cone photoreceptors from C3H mice (we refer this mouse model as f-RD) that were transfected by AAVs to express fluorescent reporters to genomic analyses. We tested three different ages.
Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa.
Age, Specimen part, Treatment
View SamplesSmall interfering RNAs (siRNAs) and microRNAs (miRNAs) guide catalytic sequence-specific cleavage of fully or nearly fully complementary target mRNAs or control translation and/or stability of many mRNAs that share 6-8 nucleotides (nt) of complementarity to the siRNA and miRNA 5' end. siRNA- and miRNA-containing ribonucleoprotein silencing complexes are assembled from double-stranded 21- to 23-nt RNase III processing intermediates that carry 5' phosphates and 2-nt overhangs with free 3' hydroxyl groups. Despite the structural symmetry of a duplex siRNA, the nucleotide sequence asymmetry can generate a bias for preferred loading of one of the two duplex-forming strands into the RNA-induced silencing complex (RISC). Here we show that the 5'-phosphorylation status of the siRNA strands also acts as an important determinant for strand selection. 5'-O-methylated siRNA duplexes refractory to 5' phosphorylation were examined for their biases in siRNA strand selection. Asymmetric, single methylation of siRNA duplexes reduced the occupancy of the silencing complex by the methylated strand with concomitant elimination of its off-targeting signature and enhanced off-targeting signature of the phosphorylated strand. Methylation of both siRNA strands reduced but did not completely abolish RNA silencing, without affecting strand selection relative to that of the unmodified siRNA. We conclude that asymmetric 5' modification of siRNA duplexes can be useful for controlling targeting specificity.
Strand-specific 5'-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity.
No sample metadata fields
View Samples