Identification of differential gene regulation pattern in human liposarcoma
No associated publication
Specimen part, Disease, Disease stage
View SamplesAffymetrix Human Gene 1.1 ST Array profiling of 285 primary medulloblastoma samples.
Subgroup-specific structural variation across 1,000 medulloblastoma genomes.
Sex, Age
View SamplesEpendymal tumors across age groups have been classified and graded solely by histopathology. It is, however, commonly accepted that this classification scheme has limited clinical utility based on its lack of reproducibility in predicting patient outcome. We aimed at establishing a reliable molecular classification using DNA methylation fingerprints and gene expression data of the tumors on a large cohort of 500 tumors. Nine robust molecular subgroups, three in each anatomic compartment of the central nervous system (CNS), were identified.
Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups.
Sex, Specimen part
View SamplesPrimitive neuroectodermal tumors of the central nervous system (CNS PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children. Using DNA methylation and gene expression profiling we have demonstrated that a significant proportion of institutionally diagnosed CNS PNETs display molecular profiles indistinguishable from those of various other well defined CNS tumor entities, facilitating diagnosis and appropiate therapy for children with these tumors. From the remaining fraction of CNS PNETs, we have identified four distinct new CNS tumor entities extending to other neuroepithelial tumors, each associated with a recurrent genetic alteration and particular histopathological and clinical features. These molecular entities, designated CNS Neuroblastoma with FOXR2 activation (CNS NB FOXR2), CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT CIC), CNS high grade neuroepithelial tumor with MN1 alteration (CNS HGNET MN1), and CNS high grade neuroepithelial tumor with BCOR alteration (CNS HGNET BCOR), will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by these poorly differentiated CNS tumors.
New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs.
Sex, Age
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A biobank of patient-derived pediatric brain tumor models.
No sample metadata fields
View SamplesRecent genomic approaches have suggested the existence of multiple distinct subtypes of medulloblastoma. We studied a large cohort of medulloblastomas to determine how many subgroups of the disease exist, how they differ, and the extent of overlap between subgroups. We determined gene expression profiles and DNA copy number aberrations for 103 primary medulloblastomas. Bioinformatic tools were used for class discovery of medulloblastoma subgroups based on the most informative genes in the dataset. Immunohistochemistry for subgroup-specific signature genes was used to determine subgroup affiliation for 294 non-overlapping medulloblastomas on two independent tissue microarrays (TMAs). Multiple unsupervised analyses of transcriptional profiles identified four distinct, non-overlapping molecular variants: WNT, SHH, Group C, and Group D. Supervised analysis of these four subgroups revealed significant subgroup-specific demographics, histology, metastatic status, and DNA copy number aberrations. Immunohistochemistry for DKK1 (WNT), SFRP1 (SHH), NPR3 (Group C), and KCNA1 (Group D) could reliably and uniquely classify formalin fixed medulloblastomas in ~98% of cases. Group C patients (NPR3 +ve tumors) exhibited a significantly diminished progression free and overall survival irrespective of their metastatic status. Our integrative genomics approach to a large cohort of medulloblastomas has identified four disparate subgroups with distinct demographics, clinical presentation, transcriptional profiles, genetic abnormalities, and clinical outcome. Medulloblastomas can be reliably assigned to subgroups through immunohistochemistry, thereby making medulloblastoma sub-classification widely available. Future research on medulloblastoma and the development of clinical trials should take into consideration these four distinct types of medulloblastoma.
Medulloblastoma comprises four distinct molecular variants.
Sex, Age, Specimen part
View SamplesMedulloblastoma is the most common malignant pediatric brain tumor, and mechanisms underlying its development are poorly understood. We identified recurrent amplification of the miR-17/92 polycistron proto-oncogene in 6% of pediatric medulloblastomas by high-resolution single-nucleotide polymorphism genotyping arrays and subsequent interphase fluorescence in situ hybridization on a human medulloblastoma tissue microarray. Profiling the expression of 427 mature microRNAs (miRNA) in a series of 90 primary human medulloblastomas revealed that components of the miR-17/92 polycistron are the most highly up-regulated miRNAs in medulloblastoma. Expression of miR-17/92 was highest in the subgroup of medulloblastomas associated with activation of the sonic hedgehog (Shh) signaling pathway compared with other subgroups of medulloblastoma. Medulloblastomas in which miR-17/92 was up-regulated also had elevated levels of MYC/MYCN expression. Consistent with its regulation by Shh, we observed that Shh treatment of primary cerebellar granule neuron precursors (CGNP), proposed cells of origin for the Shh-associated medulloblastomas, resulted in increased miR-17/92 expression. In CGNPs, the Shh effector N-myc, but not Gli1, induced miR-17/92 expression. Ectopic miR-17/92 expression in CGNPs synergized with exogenous Shh to increase proliferation and also enabled them to proliferate in the absence of Shh. We conclude that miR-17/92 is a positive effector of Shh-mediated proliferation and that aberrant expression/amplification of this miR confers a growth advantage to medulloblastomas.
The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors.
Sex, Age, Specimen part
View SamplesSmoothened (SMO)-inhibitors recently entered clinical trials for sonic-hedgehog driven medulloblastoma (SHH-MB). Clinical response appears highly variable. To understand the mechanism(s) of primary resistance and to identify pathways co-operating with aberrant SHH-signaling, we sequenced a large cohort of SHH-MBs across all age groups by sequencing, DNA methylation and expression profiling. Our data show that most adults but only half of the pediatric patients with SHH-MB will respond to SMO inhibition as predicted by molecular analysis of the primary tumor and tested in the SHH-xenografts, demonstrating that the next generation of SMO-inhibitor trials should be based on these predictive biomarkers.
Genomic and transcriptomic analyses match medulloblastoma mouse models to their human counterparts.
Sex, Age
View SamplesWe have generated and comprehensively characterized 30 patient-derived orthotopic xenograft (PDOX) models and 7 cell lines represeneting subgroups of medulloblastoma, high-grade glioma, atypical teratoid/rhabdoid tumor, ependymoma and pineoblastoma.
A biobank of patient-derived pediatric brain tumor models.
No sample metadata fields
View SamplesWilms tumor (nephroblastoma) is a pediatric kidney tumor that arises from renal progenitor cells. Since the blastemal type is associated with adverse prognosis, we characterized such Wilms tumors by exome and transcriptome analysis. We detected novel, recurrent somatic mutations affecting the SIX1/2 SALL1 pathway implicated in kidney development, the DROSHA/DGCR8 microprocessor genes as well as alterations in MYCN and TP53, the latter being strongly associated with dismal outcome. The DROSHA mutations impair the RNase III domains, while DGCR8 exhibits stereotypic E518K mutations in the RNA binding domain - both may skew miRNA representation. SIX1 and SIX2 mutations affect a single hotspot (Q177R) in the homeodomain indicative of a dominant effect. In larger cohorts, these mutations cluster in blastemal and chemotherapy-induced regressive tumors that likely derive from blastemal cells and these are characterized by generally higher SIX1/2 expression. These findings broaden the spectrum of human cancer genes and may open new avenues for stratification and therapeutic leads for Wilms tumors.
Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors.
Sex
View Samples