Human and mouse blood each contain two monocyte subsets. Here, we investigated the extent of their similarity using a microarray approach. Approximately 300 genes in human and 550 genes in mouse were differentially expressed between subsets. More than 130 of these gene expression differences were conserved between mouse and human monocyte subsets. We confirmed numerous differences at the cell surface protein level. Despite overall conservation, some molecules were conversely expressed between the two species subsets, including CD36, CD9, and TREM-1. Furthermore, other differences existed, including a prominent PPAR signature in mouse monocytes absent in human. Overall, human and mouse monocyte subsets are far more broadly conserved than currently recognized. Thus, studies in mice may indeed yield relevant information regarding the biology of human monocyte subsets. However, differences between the species deserve consideration in models of human disease studied in the mouse.
Comparison of gene expression profiles between human and mouse monocyte subsets.
No sample metadata fields
View SamplesTransforming growth factor (TGF)-1 is a multifunctional cytokine regulating a number of physiological and patho-physiological processes in the adult brain. Its expression is elevated during neurodegeneration, which is associated with reduced levels of neurogenesis. We have postulated that TGF-1 might be one of the crucial factors involved in limiting neurogenesis in the diseased brain.
No associated publication
Age
View SamplesTransforming growth factor (TGF)-1 is a multifunctional cytokine regulating a number of physiological and patho-physiological processes in the adult brain. Its expression is elevated during neurodegeneration, which is associated with reduced levels of neurogenesis. We have postulated that TGF-1 might be one of the crucial factors involved in limiting neurogenesis in the diseased brain.
No associated publication
Age, Specimen part
View SamplesNotch1-IC, Notch2-IC or EBNA2 have been induced in a conditionally immortalized human B cell line (EREB2-5) in order to identify similar and unique target genes in B cells. CAT was used as a control.
Notch1, Notch2, and Epstein-Barr virus-encoded nuclear antigen 2 signaling differentially affects proliferation and survival of Epstein-Barr virus-infected B cells.
No sample metadata fields
View SamplesIn a transgenic mouse model of Alzheimer disease (AD), cleavage of the amyloid precursor protein (APP) by the -secretase ADAM10 prevented amyloid plaque formation and alleviated cognitive deficits. Furthermore, there was a positive influence of ADAM10 over-expression on neurotransmitter-specific formation of synapses and on synaptic plasticity.
Differential gene expression in ADAM10 and mutant ADAM10 transgenic mice.
Sex, Age
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide analysis of PDX1 target genes in human pancreatic progenitors.
Specimen part
View SamplesObjective: Homozygous loss-of-function mutations in the gene coding for the homeobox transcription factor (TF) PDX1 leads to pancreatic agenesis, whereas heterozygous mutations can cause Maturity-Onset Diabetes of the Young 4 (MODY4). Although the function of Pdx1 is well studied in pre-clinical models during insulin-producing -cell development and homeostasis, it remains elusive how this TF controls human pancreas development by regulating a downstream transcriptional program. Furthermore, many studies reported the association between single nucleotide polymorphisms (SNPs) and T2DM and it has been shown that islet enhancers are enriched in T2DM-associated SNPs. Whether regions, harboring T2DM-associated SNPs are PDX1 bound and active at the pancreatic progenitor stage has not been reported so far.
Genome-wide analysis of PDX1 target genes in human pancreatic progenitors.
Specimen part
View SamplesThe principal toxicity of acute organophosphate (OP) pesticides poisoning is the disruption of neurotransmission through inhibition of acetylcholinesterase (AChE). However, other mechanisms leading to persistent effects and neurodegeneration remain controversial and difficult to detect. Because Caenorhabditis elegans is relatively resistant to OP lethalityparticularly through the inhibition of AChEstudies in this nematode provide an opportunity to observe alterations in global gene expression following OP exposure that cannot be readily observed in less resistant organisms.
Alterations in gene expression in Caenorhabditis elegans associated with organophosphate pesticide intoxication and recovery.
No sample metadata fields
View SamplesEffective toxicological testing of the vast number of new and existing chemicals currently in use will require efficient and cost effective methods. We evaluated the utility of a simple, low cost toxicity testing system employing the nematode Caenorhabditis elegans to identify toxicologically relevant changes in gene expression.
No associated publication
No sample metadata fields
View SamplesU.S. Service Members and civilians are at risk of exposure to a variety of environmental health hazards throughout their normal duty activities and in industrial occupations. Metals are widely used in large quantities in a number of industrial processes and are a common environmental toxicant, which increases the possibility of being exposed at toxic levels. While metal toxicity has been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify candidate biomarkers, rats were exposed via a single intraperitoneal injection to three concentrations of CdCl2 and Na2Cr2O7, with livers harvested at 1, 3, or 7 days after exposure. Cd and Cr accumulated in the liver at 1 day post exposure. Cd levels remained elevated over the length of the experiment, while Cr levels declined. Metal exposures induced ROS, including hydroxyl radical (OH), resulting in DNA strand breaks and lipid peroxidation. Interestingly, ROS and cellular damage appeared to increase with time post-exposure in both metals, despite declines in Cr levels. Differentially expressed genes were identified via microarray analysis. Both metals perturbed gene expression in pathways related to oxidative stress, metabolism, DNA damage, cell cycle, and inflammatory response. This work provides insight into the temporal effects and mechanistic pathways involved in acute metal intoxication, leading to the identification of candidate biomarkers.
Temporal changes in rat liver gene expression after acute cadmium and chromium exposure.
Specimen part, Treatment
View Samples