This SuperSeries is composed of the SubSeries listed below.
BIM upregulation and ROS-dependent necroptosis mediate the antitumor effects of the HDACi Givinostat and Sorafenib in Hodgkin lymphoma cell line xenografts.
Specimen part, Cell line, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
No associated publication
Specimen part, Disease, Disease stage, Subject
View SamplesTherapeutic targeting of BRAFV600Eand of MEK has shown a significant impact on progression-free and overall survival in advanced melanoma, but only a fraction of patients benefit from these treatments, suggesting that additional signaling pathways involved in melanoma growth/survival need to be identified. To this end, we used whole genome microarray analysis to identify differentially expressed genes in a set of neoplastic clones, isolated from a single melanoma metastasis, and characterized by mututally exclusive expression of BRAFV600E or NRASQ61R. By this approach we identified two genes, SEMA6A and Mical-1 belonging to the semaphorin-plexin signaling pathway and higly expressed, at mRNA and protein level, in BRAF-mutant neoplastic clones. Real-time PCR, Western blot analysis and immunohistochemistry confirmed the preferential expression of SEMA-6A and Mical-1 in BRAFV600E neoplastic cells from melanoma clones, primary and metastatic cell lines and tissue sections from melanoma lesions. SEMA6A depletion, by specific RNA-interference experiments, led to cytoskeletal remodeling, loss of stress fibers, generation of actin-rich protrusion, and cell death, whereas SEMA6A overexpression, in NRASQ61R clones, promoted invasiveness. Mical-1 depletion, by siRNA, in BRAFV600E melanomas, did not alter the actin cytoskeleton organization but caused a strong NDR phosphorylation and NDR-dependent apoptosis. Overall, these results suggest that the SEMA and MICAL pathways contribute to promote survival of BRAFV600E melanomas.
Sema6A and Mical1 control cell growth and survival of BRAFV600E human melanoma cells.
Cell line
View SamplesAltered phosphatidylcholine (PC) metabolism in epithelial ovarian cancer (EOC) can provide choline-based imaging approaches as powerful tools to improve diagnosis and identify new therapeutic targets. Biochemical, protein and mRNA expression analyses demonstrated that the increase in the major choline-containing metabolite phosphocholine (PCho) in EOC compared with normal and non-tumoral immortalized counterparts (EONT) mainly rely upon: 1) ChoK activation, consistent with higher protein content and increased ChoKalpha mRNA expression levels; 2) PC-plc activation, consistent with higher, previously reported, protein expression. More limited and variable sources of PCho could derive, in some EOC cells, from activation of Phospholipase D or GPC-pd. Phospholipase A2 activity and isoforms expression levels were lower or unchanged in EOC compared with EONT cells. Increased ChoKalpha mRNA, as well as ChoK and PC-plc protein expression, were also detected in surgical specimens isolated from EOC patients. Overall, we demonstrated that the elevated PCho pool detected in EOC cells primarily resulted from the upregulation/activation of ChoK and PC-plc involved in the biosynthetic and in a degradative pathway of the PC-cycle, respectively.
Activation of phosphatidylcholine cycle enzymes in human epithelial ovarian cancer cells.
Age, Specimen part, Disease stage, Cell line
View SamplesB-cell chronic lymphocytic leukemia (CLL) is a common type of leukemia, characterized by the progressive accumulation of CD5+ mature monoclonal B lymphocytes in peripheral blood, bone marrow and lymphoid tissues. Although circulating CLL cells are non-dividing cells, prone to spontaneous apoptosis, their progressive accumulation is the result of a dynamic balance between cell death and proliferation and a high turn-over rate has been related to a poor prognosis. Indeed, CLL cells are protected from apoptosis and proliferate in specific niches within the lymphoid tissues and the bone marrow.
No associated publication
Specimen part, Disease, Disease stage, Subject
View SamplesTherapeutic targeting of BRAFV600E has shown a significant impact on progression-free and overall survival in advanced melanoma, but only a fraction of patients benefit from these treatments, suggesting that additional signaling pathways involved in melanoma growth/survival need to be identified. In fact MAPK and PI3K/mTOR signaling pathways are constituively activated in most cancers, including melanoma, to sustain the melanoma growth/survival. A large panel of melanoma were characterized for resistance/susceptibility to different inhibitors targeting MAPK and PI3K/mTOR signaling pathways and the synergistic effect of combinatorial treatments affecting both pathways. These effects were evaluated in terms of cell viability (MTT), apoptosis (Annexin V-PI), caspase 3/7 activity and subG1 cell fraction, highlighting a hierarchy in the combination effects. Further, a smaller panel of melanoma cell lines, were treated with inhibitors singularly and in combination to test the effects on the expression of principal proteins involved in these two pathways. Gene expression profile was performed to analyse the gene modulation induced by inhibitors to identify new strategies to fight melanoma resistance.
Primary cross-resistance to BRAFV600E-, MEK1/2- and PI3K/mTOR-specific inhibitors in BRAF-mutant melanoma cells counteracted by dual pathway blockade.
Specimen part, Cell line, Treatment
View SamplesAIRmax and AIRmin mouse lines show a differential lung inflammatory response and differential lung tumor susceptibility after urethane treatment, thus constituting a good genetic model to investigate differences in gene expression profiles related to inflammatory response and lung tumor susceptibility. The transcript profile of ~24,000 known genes was analyzed in normal lung tissue of untreated and urethane-treated AIRmax and AIRmin mice. In lungs of untreated mice, inflammation associated genes involved in pathways such as leukocyte transendothelial migration, cell adhesion and tight junctions were differentially expressed in AIRmax versus AIRmin mice. Moreover, gene expression levels differed significantly in urethane-treated mice even at 21 days after treatment. In AIRmin mice, modulation of expression of genes involved in pathways associated with inflammatory response paralleled the previously observed persistent infiltration of inflammatory cells in the lung of these mice. In conclusion, a specific gene expression profile in normal lung tissue is associated with mouse line susceptibility or resistance to lung tumorigenesis and with different inflammatory response, and urethane treatment causes a long-lasting alteration of the lung gene expression profile that correlates with persistent inflammatory response of AIRmin mice.
Transcriptome of normal lung distinguishes mouse lines with different susceptibility to inflammation and to lung tumorigenesis.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of a gene expression driven progression pathway in myxoid liposarcoma.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
PKC-alpha modulation by miR-483-3p in platinum-resistant ovarian carcinoma cells.
Specimen part, Cell line
View SamplesFUS-CHOP and EWS-CHOP balanced translocations characterize myxoid liposarcoma which encompasses myxoid (ML) and round cell (RC) variants initially believed to be distinct diseases. Currently, myxoid and RC liposarcoma are regarded to represent the well differentiated and the poorly differentiated ends, respectively, within spectrum of myxoid liposarcoma where the fusion proteins blocking lipogenic differentiation play a role in tumor initiation while molecular determinants associated to progression to RC remain poorly understood. Activation of AKT pathway sustained by PIK3CA and PTEN mutations and growth factor receptor signalling such as RET and IGF1R have been recently correlated with the increasing of aggressiveness and RC. Aim of the present study is to elucidate molecular events involved in driving round cell progression analyzing two small series of MLS selected to be representative of the two end of the gamut: the pure myxoid (0% of RC component) and RC with high cellular component (80%).
Identification of a gene expression driven progression pathway in myxoid liposarcoma.
Sex, Age, Specimen part
View Samples