We produced and analyzed the transcriptomic profiles of agressive plasmablastic lymphomas to describe their "immune escape" profile, depending on their viral status (HIV, EBV, ...). We used microarrays to compare the global gene expression profile between EBV+ and EBV- PL subtypes. This analysis unveiled the interest of treating EBV+ PL patients by immune checkpoint blockade strategies.
No associated publication
Specimen part
View SamplesExhaustion markers are expressed by T lymphocytes in Follicular Lymphoma (FL). Through these, TIM-3 has been recently identified as a poor pronostic factor when expressed by FL CD4+ T cells.
Impaired functional responses in follicular lymphoma CD8<sup>+</sup>TIM-3<sup>+</sup> T lymphocytes following TCR engagement.
Specimen part, Subject
View SamplesGlioblastomas (GBM) are brain tumors which display a bad prognosis despite conventional treatment associating surgical resection and subsequent radio-chemotherapy. These tumors are defined by an abundant and abnormal vascularization as well as by an important cellular heterogeneity. GBM notably contain a subpopulation of GBM stem-like cells (GSC) which contribute to tumor aggressiveness, resistance, and recurrence. Moreover, GSC directly take part in the formation of new vessels via their transdifferentiation into tumor derived endothelial cells (TDEC). Considering the importance of the vascularization in the GBM, we postulate that radiation could enhance the transdifferentiation of GSC into TDEC. Here, we show that ionizing radiation potentiates endothelial features of TDEC obtained from 3 patient-derived primocultures of GSC. Indeed, TDEC obtained from irradiated GSC (TDEC IR+) migrate more towards VEGF, form more pseudotubes in Matrigel in vitro and develop more functional blood vessel in Matrigel plugs implanted in Nude mice than TDEC obtained from non-irradiated GSC. Transcriptomic analysis allows us to highlight an overexpression of Tie2 in TDEC IR+ which is associated with the activation of AKT signaling pathway. All radiation-induced effects on TDEC IR+ were abolished by using a Tie2 kinase inhibitor, confirming the role of Tie2 signaling pathway in this process. Finally, the number of Tie2+ vessels is increased in recurrent GBM compared with matched untreated tumors. In conclusion, we show that irradiation potentiates proangiogenic features of TDEC throught Tie2/AKT signaling pathway. New therapeutic stategies associating standard teatment and an inhibitor of Tie2 signaling pathway should be considered for forthcoming trials.
Ionizing radiation induces endothelial transdifferentiation of glioblastoma stem-like cells through the Tie2 signaling pathway.
Specimen part
View Samples