One of the main problems in managing desmoids tumors is their locoregional aggressiveness and their high ability to recur after initial treatment. In our work, with the goal to identify molecular markers that can predict Progression-Free Survival, gene-expression screening was conducted on 128 available independent untreated primary desmoid tumors using cDNA microarray. By analyzing expression profiles, we have identified, for the first time, a gene expression signature that is able to predict Progression-Free Survival. This molecular signature identified two groups with clearly distinct Progression-Free Survival in the two sets of subjects. Patients in good prognostic group had achieved a progression-free 2-year survival rate of 86% while patients in poor prognostic group had a progression-free 2-year survival rate of 44%.
Gene Expression Profiling of Desmoid Tumors by cDNA Microarrays and Correlation with Progression-Free Survival.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
RNA sequencing validation of the Complexity INdex in SARComas prognostic signature.
Time
View SamplesWe validated the technological and material transfers of the CINSARC signature.
RNA sequencing validation of the Complexity INdex in SARComas prognostic signature.
Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptome analysis of Wnt3a-treated triple-negative breast cancer cells.
Cell line
View SamplesFor this study, we selected, from the French Sarcoma Group (FSG) database, soft tissue sarcomas with no recurrent chromosomal translocations and for which a frozen tissue of the untreated primary tumor was available. Three hundred and ten sarcomas have been studied. They are split in two cohorts.
Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity.
Specimen part, Disease, Time
View SamplesIdentification of predictive markers of response to treatment is a major objective in breast cancer. A major problem in clinical sampling is the variability of RNA templates, requiring accurate management of tumour material and subsequent analyses for future translation in clinical practice. Our aim was to establish the feasibility and reliability of high throughput RNA analysis in a prospective trial.
Importance of pre-analytical steps for transcriptome and RT-qPCR analyses in the context of the phase II randomised multicentre trial REMAGUS02 of neoadjuvant chemotherapy in breast cancer patients.
Specimen part, Disease stage
View SamplesFor this study, we selected, from the French Sarcoma Group (FSG) database, soft tissue sarcomas with no recurrent chromosomal translocations and for which frozen tissue of the untreated primary tumor was available. One hundred and eighty-three cases were studied.
No associated publication
Specimen part, Disease
View SamplesTranscriptome analysis of 130 breast cancer samples (41 TNBC; 30 Her2; 30 Luminal B and 29 Luminal A), 11 normal breast tissue samples and 14 TNBC cell lines.
Transcriptome analysis of Wnt3a-treated triple-negative breast cancer cells.
Cell line
View SamplesTranscriptome analysis of 130 breast cancer samples (41 TNBC; 30 Her2; 30 Luminal B and 29 Luminal A), 11 normal breast tissue samples and 14 TNBC cell lines.
Transcriptome analysis of Wnt3a-treated triple-negative breast cancer cells.
Cell line
View SamplesThe distinction between primary and secondary ovarian tumors may be challenging for pathologists.
A genomic and transcriptomic approach for a differential diagnosis between primary and secondary ovarian carcinomas in patients with a previous history of breast cancer.
Specimen part, Disease stage
View Samples