refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 17532 results
Sort by

Filters

Technology

Platform

accession-icon GSE25926
Comparative transcriptome profiling of Amyloid Precursor Protein APP family members in the adult cortex
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The -amyloid precursor protein APP and the related APLPs, undergo complex proteolytic processing giving rise to several fragments. Whereas it is well established that A accumulation is a central trigger for Alzheimer disease (AD), the physiological role of APP family members and their diverse proteolytic products is still largely unknown. The secreted APPs ectodomain has been shown to be involved in neuroprotection and synaptic plasticity. The -secretase generated APP intracellular domain AICD, functions as a transciptional regulator in heterologous reporter assays, although its role for endogenous gene regulation has remained controversial. To gain further insight into the molecular changes associated with knockout phenotypes and to elucidate the physiological functions of APP family members including their proposed role as transcriptional regulators we performed a DNA microarray transcriptome profiling of the frontal cortex of adult wild type, APP-/-, APLP2-/- and APPs knockin (KI) mice, APP/, expressing solely the secreted APPs ectodomain. Biological pathways affected by the lack of APP family members included regulation of neurogenesis, regulation of transcription and regulation of neuron projection development. Comparative analysis of transcriptome changes and qPCR validation identified co-regulated gene sets. Interestingly, these included heat shock proteins and plasticity related genes that were down-regulated in knock-out cortices. In contrast, we failed to detect significant differences in expression of previously proposed AICD target genes including Bace1, Kai1, Gsk3b, p53, Tip60 and Vglut2. Only Egfr was slightly up-regulated in APLP2-/- mice. Comparison of APP-/- and APP/ with wild-type mice revealed a high proportion of co-regulated genes indicating an important role of the C-terminus for cellular signaling. Finally, comparison of APLP2-/- on different genetic backgrounds revealed that background related transcriptome changes may dominate over changes due to the knockout of a single gene. Shared transcriptome profiles corroborated closely related physiological functions of APP family members in the adult central nervous system. As expression of proposed AICD target genes was not altered in adult cortex, this may indicate that these genes are not affected by lack of APP under resting conditions or only in a small subset of cells.

Publication Title

Comparative transcriptome profiling of amyloid precursor protein family members in the adult cortex.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE27888
Comparative transcriptome analysis of APPs-DM and APLP2-KO brains
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Despite its key role in Alzheimer pathogenesis, the physiological function(s) of the amyloid precursor protein (APP) and of its proteolytic fragments are still poorly understood. The secreted APPs ectodomain has been shown to be involved in neuroprotection and synaptic plasticity. The -secretase generated APP intracellular domain, AICD, functions as a transcriptional regulator in heterologous reporter assays although its role for endogenous gene regulation has remained controversial. Previously, we have generated APPs knockin (KI) mice expressing solely the secreted ectodomain APPs. Here, we generated double mutants (APPs-DM) by crossing APPs-KI mice onto an APLP2-deficient background and show that APPs rescues the postnatal lethality of the majority of APP/APLP2 double knockout mice. Despite normal CNS morphology and unaltered basal synaptic transmission, young APPs-DM mice already showed pronounced hippocampal dysfunction, impaired spatial learning and a deficit in LTP. To gain further mechanistic insight into which domains/proteolytic fragments are crucial for hippocampal APP/APLP2 mediated functions, we performed a DNA microarray transcriptome profiling of prefrontal cortex and hippocampus of adult APLP2-KO (APLP2-/-) and APPs-DM mice (APP/APLP2-/- mice).Interestingly, this analysis failed to reveal major genotype-related transcriptional differences. Expression differences between cortex and hippocampus were, however, readily detectable.

Publication Title

APP and APLP2 are essential at PNS and CNS synapses for transmission, spatial learning and LTP.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP095148
transcriptomic analysis of lung tissue in OVA-challenged mice
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

No description.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Cell line, Treatment

View Samples
accession-icon GSE55222
Targets of ALTERED PHLOEM DEVELOPMENT (APL)
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

We profiled transcripts from sorted phloem cells of wild-type and apl mutants to identify the genes regulated by APL in phloem.

Publication Title

Plant development. Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE70223
Transcriptome alteration by ZIC5 knockdown in melanoma cell lines, A375 and SK-MEL-28.
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To examine the transcriptome alteration caused by ZIC5 knockdown in melanoma, we performed gene expression microarray analysis.

Publication Title

ZIC5 Drives Melanoma Aggressiveness by PDGFD-Mediated Activation of FAK and STAT3.

Sample Metadata Fields

Cell line

View Samples
accession-icon E-TABM-655
Transcription profiling of mouse forebrain with induced middle cerebral artery occlusion (MCAO) to study permanent focal cerebral ischemia
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

profiling gene transcription in a mouse model of permanent focal cerebral ischemia that was induced by middle cerebral artery occlusion (MCAO)

Publication Title

Discovery of transcriptional programs in cerebral ischemia by in silico promoter analysis

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon E-MEXP-1913
Transcription profiling of human neuroblastoma cell line SH-SY5Y transfected to produce phenotypes with low, medium or high levels of beta-amyloid peptides with 40 or 42 amino acids
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133B Array (hgu133b), Affymetrix Human Genome U133A Array (hgu133a)

Description

Alzheimer's disease (AD) is characterized by massive neurodegeneration and multiple changes in cellular processes, including neurogenesis. Proteolytic processing of the amyloid precursor protein (APP) plays a central role in AD. Due to varying APP processing, several beta-amyloid peptides are generated. In contrast to the form with 40 amino acids, the variant with 42 amino acids is thought to be the pathogenic form triggering the pathophysiological cascade in AD. Here, we studied the transcriptomic response to increased or decreased Abeta42 levels generated in human neuroblastoma cells. Genome-wide expression profiles (Affymetrix)were used to analyze the cellular response to the changed Abeta42 and Abeta40-levels. <br></br><br></br>Human neuroblastoma cell line SH-SY5Y is a thrice cloned (SK-N-SH -> SH-SY -> SH-SY5 -> SH-SY5Y) subline of the neuroblastoma cell line SK-N-SH which was isolated and established in 1970. This cell line has 47 chromosomes. The cells possess a unique marker comprised of a chromosome 1 with a complex insertion of an additional copy of a 1q segment into the long arm, resulting in trisomy of 1q. The cell lines used in this study are SHSY5Y transfected with the constructs pCEP-C99I45F, pCEP-C99V50F, pCEP-C99 wildtype or mock transfected with an empty vector. Independent cell clones of each transfected line were used to provide biological replicates.<br></br> Overexpressed C99 I45F is intracellularly cleaved resulting in high Abeta42, but low Abeta40 levels.<br></br> Overexpressed C99V50F is intracellularly cleaved resulting in low Abeta42, but high Abeta40 levels.<br></br>Overexpressed C99 wildtype is intracellularly cleaved resulting in medium Abeta42 and Abeta40 levels<br></br>Mock is the SHSY5Y cell line transfected with the empty vector pCEP (Invitrogen) as a negative control

Publication Title

New Alzheimer amyloid beta responsive genes identified in human neuroblastoma cells by hierarchical clustering.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE49599
Expression profiles of globular bushy cells (GBCs) during maturation
  • organism-icon Rattus norvegicus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Calyx of Held giant presynaptic terminals in the medial nucleus of the trapezoid body of the auditory brainstem form axosomatic synapses that have advanced to one of the best-studied synaptic system of the mammalian brain. As the auditory system matures and adjusts to high fidelity synaptic transmission, the calyx undergoes extensive structural and functional changes: it is formed around postnatal day 3 (P3), achieves immature function until hearing onset around P10 and can be considered mature from P21 onwards. This setting provides the unique opportunity to examine the repertoire of genes driving synaptic structure and function.

Publication Title

Gene expression profile during functional maturation of a central mammalian synapse.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE87814
Exit from HSC dormancy is controlled via vitamin A/retinoic acid
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE60963
Alteration of mRNA and microRNA expression profiles in rat muscular type vasculature in early postnatal development
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st), Affymetrix Multispecies miRNA-3 Array (mirna3)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Alteration of mRNA and microRNA expression profiles in rat muscular type vasculature in early postnatal development.

Sample Metadata Fields

Sex

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact