refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 11552 results
Sort by

Filters

Technology

Platform

accession-icon GSE39392
Androgenetic haploid embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Androgenetic haploid embryonic stem cells produce live transgenic mice.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE39391
Gene expression data from ahES cells, ES cells, MEF cells and round sperm
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Haploid stem cells offer an easy-to-manipulate genetic system and therefore have great values for studies of recessive phenotypes. Here, we show that mouse androgenetic haploid ES (ahES) cell lines can be established by transferring sperm into enucleated oocyte. The ahES cells maintain haploidy and stable growth over 30 passages, express pluripotent markers, possess the ability to differentiate into all three germ-layers in vitro and in vivo, and contribute to germline of chimeras when injected into blastocysts. Although epigenetically distinct from sperm cells, the ahES cells can produce viable and fertile progenies after intracytoplasmic injection into mature oocytes. The oocyte injection procedure can also produce viable transgenic mice from genetically engineered ahES cells.

Publication Title

Androgenetic haploid embryonic stem cells produce live transgenic mice.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE21515
Expression data from mouse ES and iPS cells
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Induced pluripotent stem (iPS) cells were produced from reprogramming of somatic cells, and they are shown to possess pluripotent properties similar to embryonic stem (ES) cells. Here we used microarrays to detail the global expression pattern among the ES cells and iPS cells, as well as the original mouse embryo fibroblast (MEF), to identify important players involved in the reprogramming process.

Publication Title

Activation of the imprinted Dlk1-Dio3 region correlates with pluripotency levels of mouse stem cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE51806
Expression data from rat androgenetic embryonic stem cells
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The rat androgenetic embryonic stem cells (RahES cells) have only 21 chromosomes. However, they express pluripotency markers, differentiate into three germ layer cells as well as contribute to the germline as the normal diploid rat ES cells. Moreover, the RahES cells can produce fertile rats after intracytoplasmic injection into oocytes, thus are capable to transmit genetic modifications to offspring.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE79146
Expression data from induced parvalbumin neurons.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Parvalbumin neurons, as an important subtype of inhibitory neurons, play a crucial role in the brain. The dysfunctions of those cells are associated with multiple neural system disorders. We carried out whole gene expression studies for the induction process of parvalbumin neurons.

Publication Title

Conversion of Fibroblasts to Parvalbumin Neurons by One Transcription Factor, Ascl1, and the Chemical Compound Forskolin.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE111957
Expression data of E7.5 primary germ layers
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Whole-transcriptome splicing profiling of E7.5 mouse primary germ layers reveals frequent alternative promoter usage during mouse early embryogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE111954
Expression data of E7.5 primary germ layers [microarray]
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Alternative splicing (AS) and alternative promoter (AP) usage expand the repertories of mammalian transcriptome profiles and thus diversify gene functions. However, our knowledge about the extent and functions of AS and AP usage in mouse early embryogenesis remains elusive. Here, by performing whole-transcriptome splicing profiling with high-throughput next generation sequencing, we report that AS extensively occurs in embryonic day (E) 7.5 mouse primary germ layers, and may be involved in multiple developmental processes. In addition, numerous RNA splicing factors are differentially expressed and alternatively spliced across the three germ layers, implying the potential importance of AS machinery in shaping early embryogenesis. Notably, AP usage is remarkably frequent at this stage, accounting for more than one quarter (430/1648) of the total significantly different AS events. Genes generating the 430 AP events participate in numerous biological processes, and include important regulators essential for mouse early embryogenesis, suggesting that AP usage is widely used and might be relevant to mouse germ layer specification. Our data underline the potential significance of AP usage in mouse gastrulation, providing a rich data source and opening another dimension for understanding the regulatory mechanisms of mammalian early development.

Publication Title

Whole-transcriptome splicing profiling of E7.5 mouse primary germ layers reveals frequent alternative promoter usage during mouse early embryogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE52033
Expression data from ATRA-treated endometrial stromal cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Decidualization is critical for the embryonic implantation and successful pregnancy. ATRA can suppress in-vitro decidualization of human endometrial stromal cells (hESCs) induced by MPA and estrogen treatment. However, the mechanism by which RA suppressed estrogen and progesterone induced decidualization of mESCs is not clear.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE63186
RNA-DIRECTED DNA METHYLATION 4 modulates cold stress resistance in Arabidopsis through the C-REPEAT-BINDING FACTOR-mediated pathway
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

RDM4 modulates cold stress resistance in Arabidopsis partially through the CBF-mediated pathway.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE62887
Expression data from haploid and diploid epiblast stem cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Haploid pluripotent stem cells, such as haploid embryonic stem cells (haESCs), facilitate the genetic study of recessive traits. In vitro, fish haESCs maintain haploidy in both undifferentiated and differentiated states, but whether mammalian haESCs can preserve pluripotency in the haploid state has not been tested. Here, we report that mouse haESCs can differentiate in vitro into haploid epiblast stem cells (haEpiSCs), which maintain an intact haploid genome, unlimited self-renewal potential, and durable pluripotency to differentiate into various tissues in vitro and in vivo. Mechanistically, the maintenance of self-renewal potential depends on the Activin/bFGF pathway. We further show that haEpiSCs can differentiate in vitro into haploid progenitor-like cells.

Publication Title

Durable pluripotency and haploidy in epiblast stem cells derived from haploid embryonic stem cells in vitro.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact