We examined early and late gene expression changes using the IT LPS model of Acute Lung Injury (ALI). In this model, injury peaks at day 4 and is almost completely resolved by day 10 in wild type (WT) C57BL/6 mice. In contrast to the pattern in WT mice, lymphocyte-deficient Rag-1 -/- mice exhibit strikingly delayed resolution despite similar initial injury.
Regulatory T cell-mediated resolution of lung injury: identification of potential target genes via expression profiling.
Sex, Specimen part, Treatment, Time
View SamplesExperiments in rodents have shown that kidney ischemia/reperfusion injury (IRI) facilitates lung injury and inflammation. To identify potential ischemia-specific lung molecular pathways involved, we conducted global gene expression profiling of lung 6 or 36 hours following 1) bilateral kidney IRI, 2) bilateral nephrectomy (BNx), and 3) sham laparotomy in C57BL/6J mice. Total RNA from whole lung was isolated and hybridized to 430MOEA (22,626 genes) GeneChips (n=3/group).
Ischemic acute kidney injury induces a distant organ functional and genomic response distinguishable from bilateral nephrectomy.
No sample metadata fields
View SamplesWe describe and illustrate the use of a method to measure nascent nuclear gene transcription with an Array-based Nuclear Run-On (ANRO) assay using commercial microarray platforms.
Time-dependent c-Myc transactomes mapped by Array-based nuclear run-on reveal transcriptional modules in human B cells.
Cell line, Treatment
View SamplesRATIONALE: Mechanical ventilation (MV) is an indispensable therapy for critically ill patients with acute lung injury and the adult respiratory distress syndrome. However, the mechanisms by which conventional MV induces lung injury remain unclear. OBJECTIVES: We hypothesized that disruption of the gene encoding Nrf2, a transcription factor which regulates the induction of several antioxidant enzymes, enhances susceptibility to ventilator-induced lung injury (VILI), while antioxidant supplementation attenuates such effect. METHODS: To test our hypothesis and to examine the relevance of oxidative stress in VILI, here we have assessed lung injury and inflammatory responses in Nrf2-deficient (Nrf2(-/-)) mice and wildtype (Nrf2(+/+)) animals following acute (2 h) injurious model of MV with or without administration of antioxidant. MEASUREMENTS AND MAIN RESULTS: Nrf2(-/-) mice displayed greater levels of lung alveolar and vascular permeability and inflammatory responses to MV as compared to Nrf2(+/+) mice. Nrf2-deficieny enhances the levels of several pro-inflammatory cytokines implicated in the pathogenesis of VILI. We found diminished levels of critical antioxidant enzymes and redox imbalance by MV in the lungs of Nrf2(-/-) mice; however antioxidant supplementation to Nrf2(-/-) mice remarkably attenuated VILI. When subjected to clinically relevant prolong period of MV, Nrf2(-/-) mice displayed greater levels of VILI than Nrf2(+/+) mice. Expression profiling revealed lack of induction of several VILI genes, stress response and solute carrier proteins and phosphatases in Nrf2(-/-) mice. CONCLUSIONS: Collectively, our data demonstrate for the first time a critical role for Nrf2 in VILI, which confers protection against cellular responses induced by MV by modulating oxidative stress.
Genetic and pharmacologic evidence links oxidative stress to ventilator-induced lung injury in mice.
No sample metadata fields
View SamplesAll animals were kept in a controlled environment (22-24 C with a 12 h : 12 h light : dark cycle; lights on at 09.00) on a standard chow diet with free access to water. Five ob/ob mice (sample_ids GSM32865-GSM32869) were placed in the intermittent hypoxia (IH) chamber and subjected to IH for 12 consecutive weeks and compared to pair-fed control exposed to intermittent room (IA) air for 12 weeks in identical chambers (n = 5, sample_ids GSM32860-GSM32864). The IH and IA states were induced during the light phase alternating with 12 h of constant room air during the dark phase. The IH and IA groups were weight-matched daily during the experiment by varying food intake. Weight-matching was conducted in pairs.
No associated publication
No sample metadata fields
View SamplesObstructive sleep apnea (OSA) leads to increased cardiovascular morbidity and mortality, which have been attributed to intermittent hypoxia (IH). The effects of IH on lung structure and function are unknown. We used a mouse model of chronic IH, which mimics the O2 profile in patients with OSA. We exposed adult C57BL/6J mice to 3 months of IH with an FIO2 nadir of 5%, 60 times/hr during the 12hr light phase. Control mice were exposed to room air.
Chronic intermittent hypoxia induces lung growth in adult mice.
Sex, Specimen part
View SamplesThe regulatory subunit of cAMP-dependent protein kinase (PKA) exists in two isoforms, RI and RII, which distinguish the PKA isozymes, type I (PKA-I) and type II (PKA-II). Evidence obtained from a variety of different experimental approaches has shown that the relative levels of type I and type II PKA in cells can play a major role in determining the balance between cell growth and differentiation. RI transfected cells exhibit hyper-proliferative growth and RII transfected cells revert to a relatively quiescent state. Profiling by microarray revealed equally profound changes in gene expression between RI, RII, and parental OVCAR cells.
Regulatory subunits of PKA define an axis of cellular proliferation/differentiation in ovarian cancer cells.
No sample metadata fields
View Samples