refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 339 results
Sort by

Filters

Technology

Platform

accession-icon GSE90034
Srf destabilizes cell identity
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconAgilent-028005 SurePrint G3 Mouse GE 8x60K Microarray (Probe Name version), Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Srf destabilizes cellular identity by suppressing cell-type-specific gene expression programs.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE90032
Srf destabilizes cell identity (Microarray_affymetrix)
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Multicellular organisms consist of multiple cell types, whose identities are maintained appropriately at locations where they are reside. The identity of each cell type is primarily maintained by cell-type-specific gene expression programs, but mechanisms that suppress these programs are poorly defined. Here we show that serum response factor (Srf), a transcription factor that is activated by various extracellular stimuli, can repress cell-type-specific genes and promote cellular reprogramming to pluripotency. Manipulations that decrease -actin monomer resulted in nuclear accumulation of Mkl1 and the activation of Srf, which downregulated cell-type-specific genes and altered epigenetics in enhancers and chromatin organization. Mice overexpressing Srf exhibited various pathologies including an ulcerative colitis-like symptom and a metaplasia-like phenotype in the pancreas. Our results demonstrate an unexpected function of Srf via a mechanism by which extracellular stimuli actively destabilize cell identity and suggest Srf involvement in a wide range of diseases.

Publication Title

Srf destabilizes cellular identity by suppressing cell-type-specific gene expression programs.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE134618
Expression data during differentiation from mouse embryonic stem cells with or without PKA activation
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The rate of cell differentiation is tightly controlled and critical for normal development and stem cell differentiation. However, so far it has been difficult to control the rate of ESCs differentiation. Here we report the acceleration of the differentiation rate due to the activation of protein kinase A (PKA) and the associated early loss of embryonic stem cells (ESCs) pluripotency markers and the early appearance of mesodermal and other germ layer cell markers.

Publication Title

Protein kinase A accelerates the rate of early stage differentiation of pluripotent stem cells.

Sample Metadata Fields

Time

View Samples
accession-icon GSE11128
Expression data from single cells from mouse primordial germ cell lineage (E6.25-E8.25, wild type and Blimp1KO)
  • organism-icon Mus musculus
  • sample-icon 105 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Specification of germ cell fate is fundamental in development. With a highly representative single-cell microarray and rigorous quantitative-PCR analysis, we defined the genome-wide transcription dynamics that create primordial germ cells (PGCs) from the epiblast, a process that exclusively segregates them from their somatic neighbors. We also analyzed the effect of the loss of Blimp1, a key transcriptional regulator, on these dynamics. Our analysis revealed that PGC specification involves complex, yet highly ordered regulation of a large number of genes, proceeding under the strong influence of mesoderm induction with active repression of specific programs such as epithelial-mesenchymal transition, Hox gene activation, cell-cycle progression and DNA methyltransferase machinery. Remarkably, Blimp1 is essential for repressing nearly all the genes normally down-regulated in PGCs relative to their somatic neighbors, whereas it is dispensable for the activation of approximately half of the genes up-regulated in PGCs.

Publication Title

Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE50438
Diurnal cycle effect on whole leaf, mesophyll and vasculature: time course
  • organism-icon Arabidopsis thaliana
  • sample-icon 70 Downloadable Samples
  • Technology Badge Icon Arabidopsis Gene 1.0 ST Array (aragene10st)

Description

Many organisms acquired circadian clock system to adapt daily and seasonal environmental changes. Mammals have the master clock in the brains suprachiasmatic nucleus (SCN) that synchronizes other circadian clocks in the peripheral tissues or organs. Plants also have circadian clock in their bodies, but the presence of the tissue-specific functions of circadian clock is remained elusive. The aim of this experiment is to compare tissue-specific gene expression profile using gene expression Microarray.

Publication Title

Tissue-specific clocks in Arabidopsis show asymmetric coupling.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE46855
Induction of the mouse germ cell fate by transcription factors in vitro
  • organism-icon Mus musculus
  • sample-icon 50 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Induction of mouse germ-cell fate by transcription factors in vitro.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE43850
Gene expression profiles of induced multipotent germline stem cells and other pluripotent stem cells
  • organism-icon Mus musculus
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Spermatogonial stem cells (SSCs) have pluripotent potential. However, frequency of pluripotent cell derivation is low and the mechanism of culture-induced reprogramming remains unknown. Here we report that epigenetic instability of germline stem (GS) cells, cultured SSCs, induces pluripotent cell derivation. GS cells undergo DNA demethylation in H19 differentially methylated region under low-density culture. When H19 demethylation was induced by Dnmt1 depletion, they converted into embryonic stem (ES)-like cells. Dnmt1 depletion downregulated Dmrt1 expression, whose depletion also induced pluripotency. Functional screening of Dmrt1 target gene revealed that Dmrt1 depletion upregulates Sox2, the key molecule responsible for generating induced pluripotent stem cells. Although Sox2 transfection upregulated Oct4 and produced pluripotent cells, this conversion was inhibited by Oct1 overexpression, suggesting that the balance of Oct proteins maintains SSC identity. These results suggest that culture-induced reprogramming is caused by unstable DNA methylation, and that Dmrt1-Sox2 cascade is critical for regulating pluripotency in SSCs.

Publication Title

Regulation of pluripotency in male germline stem cells by Dmrt1.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE74453
Identification of a novel risk factor for intracranial aneurysms in ADPKD using iPSC models
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of MMP1 as a novel risk factor for intracranial aneurysms in ADPKD using iPSC models.

Sample Metadata Fields

Sex, Specimen part, Disease stage, Subject

View Samples
accession-icon GSE53319
Distinct DNA-based epigenetic switches trigger transcriptional activation of silent genes in human dermal fibroblasts
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconAgilent-026652 Whole Human Genome Microarray 4x44K v2 (Probe Name version), Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Distinct DNA-based epigenetic switches trigger transcriptional activation of silent genes in human dermal fibroblasts.

Sample Metadata Fields

Sex, Treatment

View Samples
accession-icon GSE4309
An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact