T helper 17 (Th17) cell development is programmed by the orphan nuclear receptor RORgt, but the underlying mechanism is not well understood. Nuclear receptor-mediated transcriptional activation depends on coactivators. Here we show that the steroid receptor coactivator-3 (SRC-3) critically regulates Th17 cell differentiation. Reduced incidence of experimental autoimmune encephalitis (EAE) associated with decreased Th17 cell generation in vivo was observed in mice with SRC-3 deletion specifically in T cells. In vitro, SRC-3 deficiency did not affect TGF-/IL-6-induced Th17 cell generation but severely impaired pathogenic Th17 differentiation induced by IL-1/IL-6/IL-23.
No associated publication
Specimen part
View SamplesThe conversion of 5-methylcytosine (5mC) into 5-Hydroxymethylcytosine (5hmC) by ten-eleven translocation (Tet) family has recently been identified as a key process for active DNA demethylation, whose effects in the immune response is currently unknown.
The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells.
Specimen part
View SamplesT cell function is regulated by epigenetic mechanisms. 5-methylcytosine (5mC) conversion to 5-hydroxymethylcytosine (5hmC) by ten-eleven translocation (Tet) proteins was identified to mediate DNA demethylation. Here, we characterize the genome-wide distribution of 5hmC in T cells using DNA immunoprecipitation coupled with high-throughput DNA sequencing. 5hmC marks signature genes associated with effector cell differentiation in the putative regulatory elements. Moreover, Tet2 protein is recruited to 5hmC-containing regions, dependent on lineage-specific transcription factors. Deletion of the Tet2 gene in T cells decreased their cytokine expression, associated with reduced p300 recruitment. In vivo, Tet2 plays a critical role in the expression of cytokine genes. Collectively, our findings for the first time demonstrate a key role of Tet-mediated active DNA demethylation in T cells.
The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells.
Specimen part
View SamplesAnalysis of hematopoietic stem/progenitors from GATA-1-GFP transgenic mouse bone marrow at gene expression level. Results provide changes in gene expression pattern accompanied with up-regulation of GATA-1 transcription factor at early stage of murine adult hematopoiesis.
No associated publication
Age, Specimen part
View SamplesScope: As a result of population ageing, the number of Alzheimer’s disease (AD) patients has rapidly increased. There are many hypothesises on the pathogenesis of AD, but its detailed molecular mechanism is still unknown, and so no effective preventive or therapeutic measures have been established. Some reports showed a decrease in levels of norepinephrine (NE) has been suspected to be involved in the decline of cognitive function in AD patients and NE concentrations were decreased in postmortem AD patient brains. Tyr-Trp was identified as being the most effective dipeptide in enhancing norepinephrine (NE) synthesis and metabolism. And Tyr-Trp treatment ameliorated the short-term memory dysfunction in AD model mice caused by amyloid beta (Aβ) 25-35. So, the purpose of this study was to investigate the preventive or/and protective effects of Tyr-Trp administration in AD model mice.
Tyr-Trp administration facilitates brain norepinephrine metabolism and ameliorates a short-term memory deficit in a mouse model of Alzheimer's disease.
Specimen part
View SamplesAnalysis of the effect of BCR/CD40/IFN-/IL21 on human B cells at gene expression level.
No associated publication
Specimen part
View SamplesOur previous studies have revealed that treatment of pregnant rats with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, 1 g/kg) at gestational day (GD) 15 reduces the pituitary synthesis of luteinizing hormone (LH) during late fetal and early postnatal period, leading to imprinting of defects in sexual behaviors at adulthood. However, it remains obscure how the attenuation of pituitary LH links to sexual immaturity. To address this issue, we firstly performed a DNA microarray analysis to identify the gene(s) responsible for dioxin-induced sexual immaturity, using the pituitary and hypothalamus of male pups, at the age of postnatal day (PND)70, born from TCDD-treated dams. Among the reduced genes, we focused on gonadotropin-releasing hormone (GnRH) in the hypothalamus, because of its role in sexual behaviors suggested so far. The present study strongly suggests that maternal exposure to TCDD fixes the status of the lowered expression of GnRH in the offspring by reducing steroidogenesis at perinatal stage, and this is the mechanism for the imprinting of defects in sexual behaviors at adulthood.
Maternal exposure to dioxin imprints sexual immaturity of the pups through fixing the status of the reduced expression of hypothalamic gonadotropin-releasing hormone.
No sample metadata fields
View SamplesSulfur-deficiency-induced repressor proteins optimize glucosinolate biosynthesis in plants
Sulfur deficiency-induced repressor proteins optimize glucosinolate biosynthesis in plants.
Specimen part
View SamplesProliferative diabetic retinopathy (PDR) is a vision-threatening disorder characterized by the formation of cicatricial fibrovascular membranes leading to traction retinal detachment. Despite the recent advance in the treatment of PDR such as vitreoretinal surgery with use of anti-vascular endothelial growth factor (VEGF) drug as an adjunct, it still remains vision-threatening disease.
Microarray analysis of gene expression in fibrovascular membranes excised from patients with proliferative diabetic retinopathy.
Specimen part, Disease, Disease stage
View SamplesD-3-Phosphoglycerate dehydrogenase (Phgdh; EC 1.1.1.95) is a necessary enzyme for de novo L-serine biosynthesis via the phosphorylated pathway. We demonstrated previously that Phgdh is expressed exclusively by neuroepithelium and radial glia in developing mouse brain and later mainly by astrocytes. Mutations in the human PHGDH gene cause serine deficiency disorders (SDD) associated with severe neurological symptoms such as congenital microcephaly, psychomotor retardation, and intractable seizures. We recently demonstrated that genetically engineered mice, in which the gene for Phgdh has been disrupted, have significantly decreased levels of serine and glycine, and exhibit malformation of brain such as microcephaly. The Phgdh null (KO) embryos exhibit lethal phenotype after gestational day 14, indicating that the phosphorylated pathway is essential for embryogenesis, especially for brain development. It is worth noting that the Phgdh knockout (KO) embryos primarily displayed microcephaly, which is the most conspicuous phenotype of patients with SDD. Thus, Phgdh KO mice are a useful animal model for studying the effect of diminished L-serine levels on development of the central nervous system and other organs. To better understand the mechanism underlying the molecular pathogenesis of SDD, we sought to examine whether gene expression is altered in the Phgdh KO mouse model. We identify genes that have altered expression in the head of the Phgdh KO embryos using the GeneChip array. Some of the genes identified by this method belong in functional categories that are relevant to the biochemical and morphological aberrations of the Phgdh deletion.
Inactivation of the 3-phosphoglycerate dehydrogenase gene in mice: changes in gene expression and associated regulatory networks resulting from serine deficiency.
Specimen part
View Samples