refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 341 results
Sort by

Filters

Technology

Platform

accession-icon GSE60918
Genome wide targeting of the epigenetic regulatory protein CTCF to gene promoters by the transcription factor TFII-I
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide targeting of the epigenetic regulatory protein CTCF to gene promoters by the transcription factor TFII-I.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE60915
Genome wide targeting of the epigenetic regulatory protein CTCF to gene promoters by the transcription factor TFII-I [gene expression]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of the effect of TFII-I depletion on gene expression Wehi-231 cell lines.

Publication Title

Genome-wide targeting of the epigenetic regulatory protein CTCF to gene promoters by the transcription factor TFII-I.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE19624
Vascular gene expression in mice overexpressing human endothelin-1 targeted to the endothelium
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Endothelin-1 (ET-1), an endothelium-derived vasoconstrictor peptide, plays a role in the pathophysiology of cardiovascular disease. Transgenic mice that overexpress human preproET-1 selectively in the endothelium (eET-1) exhibit endothelial dysfunction, hypertrophic remodeling and vascular inflammation of resistance-size arteries in the absence of blood pressure elevation. To understand the mechanisms whereby ET-1 induces vascular damage, vascular gene expression using DNA microarrays was employed. RNA from mesenteric arteries of female and male young (6-7 weeks) and mature (6-8 months) eET-1 and wild type (WT) mice was isolated and changes in gene expression were determined by genome-wide expression profiling using Illumina microarray. This study revealed a set of genes potentially regulated by ET-1, which might be implicated in ET-1 induced-vascular damage.

Publication Title

Vascular gene expression in mice overexpressing human endothelin-1 targeted to the endothelium.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE12120
Transcriptional re-programming of primary human macrophages by IRF-3 and IRF-7
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina humanRef-8 v1.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcriptional re-programming of primary macrophages reveals distinct apoptotic and anti-tumoral functions of IRF-3 and IRF-7.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12002
Transcriptional profiles of Ad-F7 transduced macrophages treated with anti-IFNAR2 antibody or control isotype (IgG)
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina humanRef-8 v1.0 expression beadchip

Description

Determine the role of interferons in the transcriptional profile of Ad-F7 transduced primary human macrophages using neutralizing antibody for the type I IFN receptor (IFNAR2).

Publication Title

Transcriptional re-programming of primary macrophages reveals distinct apoptotic and anti-tumoral functions of IRF-3 and IRF-7.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE61484
Gamma radiation and HZE treatment of seedlings in Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 44 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Plants exhibit a robust transcriptional response to gamma radiation which includes the induction of transcripts required for homologous recombination and the suppression of transcripts that promote cell cycle progression. Various DNA damaging agents induce different spectra of DNA damage as well as collateral damage to other cellular components and therefore are not expected to provoke identical responses by the cell.

Publication Title

High atomic weight, high-energy radiation (HZE) induces transcriptional responses shared with conventional stresses in addition to a core "DSB" response specific to clastogenic treatments.

Sample Metadata Fields

Age, Time

View Samples
accession-icon GSE52589
Early SIV infection and effects of pathogenic and commensal enteric bacteria on expression in ileum tissue
  • organism-icon Macaca mulatta
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Rhesus Macaque Genome Array (rhesus)

Description

We used the ileal loop model to assess the effects of enteric bacteria organisms on host gene expression in intestinal tissue independent of and following early SIV infection. SIV infection in the gut causes rapid and severe immune dysfunction and damage to the intestinal structure, this may alter the intimate interaction with lumenal organisms. This study was performed to determine whether early SIV infection, prior to the depletion of CD4+ T cells, can alter interaction of the host with pathogenic Salmonella serovar Typhimurium (ST) or commensal Lactobacillus plantarum (LP), and to further understand the earliest changes to the intestinal mucosa following SIV infection.

Publication Title

Early mucosal sensing of SIV infection by paneth cells induces IL-1β production and initiates gut epithelial disruption.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE29344
Analysis of gene co-expression networks in skin cells exposed to different doses of ionising radiation at different time points
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

Most studies have analysed the effects of high dose radiation such as atomic bomb survivors in Japan, people exposed during the Chernobyl nuclear accident, patients undergoing radiation therapy, uranium miners, etc. However, it has been difficult to measure and assess the risk of cancer in people exposed to lower doses of ionising radiation, such as the people living at high altitudes, who are exposed to more natural background radiation from cosmic rays than people at sea level. We measured the genomic response to X-ray ionising radiation (10 cGy and 100 cGy) in a skin tissue model to compare the effects of low and high dose ionising radiation at different time points. The microarray data was then analysed using state-of-the art upside-down pyramid computational systems biology methods to identify genes contributing to the difference in the response to the different radiation doses.

Publication Title

Comparison of low and high dose ionising radiation using topological analysis of gene coexpression networks.

Sample Metadata Fields

Time

View Samples
accession-icon GSE30701
In vivo Gene Expression Profiling of Retina Post-Intravitreal Injections of Dexamethasone and Triamcinolone at Clinically Relevant Time Points for Patient Care
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

PURPOSE To identify retinal genes and their relevant expression pathways affected by intravitreal injections of dexamethasone and triamcinolone acetonide in mice at clinically relevant time points for patient care.

Publication Title

In vivo gene expression profiling of retina postintravitreal injections of dexamethasone and triamcinolone at clinically relevant time points for patient care.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE49872
In vivo Gene Expression Profiling of RPE/choroid Post-Intravitreal Injections of Dexamethasone and Triamcinolone at Clinically Relevant Time Points for Patient Care
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

PURPOSE To identify retinal pigment epithelial (RPE)/choroid genes and their relevant expression pathways affected by intravitreal injections of dexamethasone and triamcinolone acetonide in mice at clinically relevant time points for patient care. METHODS Differential gene expression of over 34,000 well-characterized mouse genes, in the RPE/choroid of 6 week old C57BL/6J mice were analyzed after intravitreal steroid injections at 1 week and 1 month post injection, using Affymetrix Mouse Genome 430 2.0 microarrays. The data were analyzed using GeneSpringGX12.5 and Ingenuity Pathway Analysis (IPA) microarray analysis software for biologically relevant changes. RESULTS Both triamcinolone and dexamethasone caused differential activation of genes involved in Circadian Rhythm Signaling pathway at both time points tested. Triamcinolone (TAA) uniquely induced significant changes in gene expression in Calcium Signaling (1 week) and Glutamate Signaling pathways (1month). In contrast, Dexamethasone (Dex) affected the GABA Receptor Signaling (1 week) and Serotonin Receptor Signaling (1month) pathways. CONCLUSIONS Understanding how intraocular steroids affect the gene expression of RPE/choroid is clinically relevant. This in vivo study has elucidated several genes and pathways that are potentially altering the circadian rhythms and several other neurotransmitter pathways in RPE/choroid cells during intravitreal steroid injections, which likely has consequences in the dysregulation of RPE function and neurodegeneration of the retina.

Publication Title

Comparison of In Vivo Gene Expression Profiling of RPE/Choroid following Intravitreal Injection of Dexamethasone and Triamcinolone Acetonide.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact