Skeletal muscle biopsies from DM1, DM2, idiopathic DM (DMx), and non-DM NMD patients were compared to those from normal individuals, with focus on MEF2 and MEF2-related genes.
Altered MEF2 isoforms in myotonic dystrophy and other neuromuscular disorders.
Sex
View SamplesDM1 and DM2 biopsies from patients were compared to Normal adult individuals
Differences in aberrant expression and splicing of sarcomeric proteins in the myotonic dystrophies DM1 and DM2.
No sample metadata fields
View SamplesTo evaluate the function of ALK in breast cancer, we enforcing expressed full length wild type ALK in the parental MCF-7 breast cancer cell line that we have established in previous studies have a very low invasive capacity, do not form tumor emboli nor do they invade into the dermal lymphatics when grown as xenografts.
No associated publication
Cell line
View SamplesThe derivation of molecular signatures indicative of disease status and predictive of subsequent behavior could facilitate the optimal choice of treatment for prostate cancer patients. In this study, we conducted a computational analysis of gene expression profile data obtained from 79 cases, 39 of which were classified as having disease recurrence, to investigate whether advanced computational algorithms can derive more accurate prognostic signatures for prostate cancer. At the 90% sensitivity level, a newly derived prognostic genetic signature achieved 85% specificity. This is the first reported genetic signature to outperform a clinically used postoperative nomogram. Furthermore, a hybrid prognostic signature derived by combination of the nomogram and gene expression data significantly outperformed both genetic and clinical signatures, and achieved a specificity of 95%. Our study demonstrates the feasibility of utilizing gene expression information for highly accurate prostate cancer prognosis beyond the current clinical systems, and shows that more advanced computational modeling of tissue-derived microarray data is warranted before clinical application of molecular signatures is considered.
Optimizing molecular signatures for predicting prostate cancer recurrence.
Specimen part
View SamplesLow-grade serous ovarian carcinoma is believed to arise from serous borderline ovarian tumors, yet the progression from serous borderline tumors to low-grade serous ovarian carcinoma remains poorly understood. The purpose of this study was to identify differentially expressed genes between the two groups. Expression profiles were generated from 6 human ovarian surface epithelia (HOSE), 8 serous borderline ovarian tumors (SBOT), 13 low-grade serous ovarian carcinomas (LG), and 22 high-grade serous ovarian carcinomas (HG). The anterior gradient homolog 3 (AGR3) gene was found to be highly upregulated in serous borderline ovarian tumors; this finding was validated by real-time quantitative RT-PCR, Western blotting, and immunohistochemistry. Anti-AGR3 immunohistochemistry was performed on an additional 56 LG and 103 HG tissues and the results were correlated with clinical data. Expression profiling determined that 1254 genes were differentially expressed (P < 0.005) between SBOT, LG and HG tumors. Serous borderline ovarian tumors exhibited robust positive staining for AGR3, with a lower percentage of tumor cells stained in LG and HG. Immunofluorescence staining indicated that AGR3 expression was limited to ciliated cells. Tumor samples with a high percentage (>10%) of AGR3 positively stained tumor cells were associated with improved longer median survival in both the LG (P = 0.013) and HG (P = 0.008) serous ovarian carcinoma groups. The progression of serous borderline ovarian tumors to low-grade serous ovarian carcinoma may involve the de-differentiation of ciliated cells. AGR3 could serve as a prognostic marker for survival in patients with low-grade and high-grade serous ovarian carcinomas.
The anterior gradient homolog 3 (AGR3) gene is associated with differentiation and survival in ovarian cancer.
Specimen part
View SamplesJuvenile pilocytic astrocytoma (JPA) is one of the most common brain tumors in children. The expression profiles of 21 JPAs, determined using Affymetrix GeneChip U133A, were compared with subjects with normal cerebella. The genes involved in neurogenesis, cell adhesion, synaptic transmission, central nervous system development, potassium ion transport, protein dephosphorylation, and cell differentiation were found to be significantly deregulated in JPA. These 21 JPAs were further clustered into two major groups by unsupervised hierarchical clustering using a set of 848 genes with high covariance (0.5-10). Supervised analysis with Significance Analysis of Microarrays software between these two potential subgroups identified a list of significant differentially expressed genes involved in cell adhesion, regulation of cell growth, cell motility, nerve ensheathment, and angiogenesis. Immunostaining of myelin basic protein on paraffin sections derived from 18 incompletely resected JPAs suggests that JPA without myelin basic proteinpositively stained tumor cells may have a higher tendency to progress.
Expression analysis of juvenile pilocytic astrocytomas by oligonucleotide microarray reveals two potential subgroups.
Age
View SamplesObjective: Ovarian tumors of low-malignant potential (LMP) and low-grade serous ovarian carcinomas are thought to represent different stages on a tumorigenic continuum and to develop along pathways distinct from that of high-grade serous ovarian carcinoma. Past studies have utilized gene expression profiles to support this theory. The objective of the current study was to identify new genes whose expression profiles in LMP ovarian tumors and low-grade ovarian carcinomas differ from that in high-grade ovarian carcinomas.
PAX2 expression in low malignant potential ovarian tumors and low-grade ovarian serous carcinomas.
No sample metadata fields
View SamplesLow-grade ovarian serous carcinomas are believed to arise via an adenoma-serous borderline tumor-serous carcinoma sequence. In this study, we found that advanced-stage, low-grade ovarian serous carcinomas both with and without adjacent serous borderline tumor shared similar regions of loss of heterozygosity. We then analyzed 91 ovarian tumor samples for mutations in TP53, BRAF, and KRAS. TP53 mutations were not detected in any serous borderline tumors (n = 30) or low-grade serous carcinomas (n = 43) but were found in 73% of high-grade serous carcinomas (n = 18). BRAF (n = 9) or KRAS (n = 5) mutation was detected in 47% of serous borderline tumors, but among the low-grade serous carcinomas (39 stage III, 2 stage II, and 2 stage I), only one (2%) had a BRAF mutation and eight (19%) had a KRAS mutation. The low frequency of BRAF mutations in advanced-stage, low-grade serous carcinomas, which contrasts with previous findings, suggests that aggressive, low-grade serous carcinomas are more likely derived from serous borderline tumors without BRAF mutation. In addition, advanced-stage, low-grade carcinoma patients with BRAF or KRAS mutation have a better apparent clinical outcome. However, further investigation is needed. Low-grade ovarian serous carcinomas are believed to arise via an adenoma-serous borderline tumor-serous carcinoma sequence. In this study, we found that advanced-stage, low-grade ovarian serous carcinomas both with and without adjacent serous borderline tumor shared similar regions of loss of heterozygosity. We then analyzed 91 ovarian tumor samples for mutations in TP53, BRAF, and KRAS. TP53 mutations were not detected in any serous borderline tumors (n = 30) or low-grade serous carcinomas (n = 43) but were found in 73% of high-grade serous carcinomas (n = 18). BRAF (n = 9) or KRAS (n = 5) mutation was detected in 47% of serous borderline tumors, but among the low-grade serous carcinomas (39 stage III, 2 stage II, and 2 stage I), only one (2%) had a BRAF mutation and eight (19%) had a KRAS mutation. The low frequency of BRAF mutations in advanced-stage, low-grade serous carcinomas, which contrasts with previous findings, suggests that aggressive, low-grade serous carcinomas are more likely derived from serous borderline tumors without BRAF mutation. In addition, advanced-stage, low-grade carcinoma patients with BRAF or KRAS mutation have a better apparent clinical outcome. However, further investigation is needed.
BRAF mutation is rare in advanced-stage low-grade ovarian serous carcinomas.
Specimen part
View SamplesPAX2 is one of nine PAX genes that regulate tissue development and cellular differentiation in embryos. PAX2 promotes cell proliferation, oncogenic transformation, cell lineage specification, migration, and survival. In our previous study, we found that PAX2 is highly expressed in low-grade ovarian serous carcinoma, but its expression in clear cell, endometrioid, and mucinous cell ovarian carcinomas have not been studied. More importantly, the functional role of PAX2 in ovarian cancer is not known.
PAX2 Expression in Ovarian Cancer.
Cell line, Treatment
View SamplesHOC-7 and MPSC1 are low grade serous ovarian cancer cell lines. These cells was treated with different doses of trametinib in an attempt to identify biomarkers that can be used to predict chemoresponse to this drug.
No associated publication
Cell line
View Samples