refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1652 results
Sort by

Filters

Technology

Platform

accession-icon GSE5290
Temperature sensitive eIF5A mutant shows accumulation of transcripts targeted to the Nonsense Mediated Decay pathway
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

The highly conserved protein eIF5A found in archaea and all eucaryotes uniquely contains the posttranslationally formed amino acid hypusine. Despite being essential the functions of this protein and its modification remain unclear. To gain more insight into these functions temperature sensitive mutants of the human EIF5A1 were characterized in the yeast Saccharomyces cerevisiae.

Publication Title

Temperature-sensitive eIF5A mutant accumulates transcripts targeted to the nonsense-mediated decay pathway.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14054
Analysis of Ago2-associated transcripts after knockdown of Importin8
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Small regulatory RNAs including small interfering RNAs (siRNAs) and microRNAs (miRNAs) guide Argonaute (Ago) proteins to specific target RNAs leading to mRNA destabilization or translational repression. We recently reported the identification of Importin 8 (Imp8) as a novel component of miRNA-guided regulatory pathways. Imp8 interacts with Ago proteins and localizes to cytoplasmic processing bodies (P-bodies), structures involved in RNA metabolism. For this micro-array dataset, we used immunoprecipitations of Ago2-associated mRNAs followed by micro-array analysis. The results demonstrate that Imp8 is required for recruiting Ago protein complexes to a large set of Ago2-associated target mRNAs allowing for efficient and specific gene silencing. Therefore, we provide evidence that Imp8 is required for cytoplasmic miRNA-guided gene silencing.

Publication Title

Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE62532
Continuous T cell receptor signals maintain a functional regulatory T cell pool
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

During development, thymocytes bearing a moderately self-reactive T cell receptor (TCR) can be selected to become regulatory T (Treg) cells. Several observations suggest that also in the periphery mature Treg cells continuously receive self-reactive TCR signals. However, the importance of this inherent autoreactivity for Treg cell biology remains poorly defined.

Publication Title

Continuous T cell receptor signals maintain a functional regulatory T cell pool.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17105
Gene expression regulated by G-actin switch
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We analysed the G-actin regulated transcriptome by gene expression analysis using previously characterised actin binding drugs. We found many known MAL/MRTF-dependent target genes of serum response factor (SRF) as well as unknown directly regulated genes.

Publication Title

Negative regulation of the EGFR-MAPK cascade by actin-MAL-mediated Mig6/Errfi-1 induction.

Sample Metadata Fields

Time

View Samples
accession-icon GSE56878
The conserved ubiquitin-like protein Hub1 plays a critical role in splicing in human cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

Different from canonical ubiquitin-like proteins, Hub1 does not form covalent conjugates with substrates but binds proteins non-covalently. In Saccharomyces cerevisiae, Hub1 associates with spliceosomes and mediates alternative splicing of SRC1, without affecting pre-mRNA splicing generally. Human Hub1 is highly similar to its yeast homolog, but its cellular function remains largely unexplored. Here, we show that human Hub1 binds to the spliceosomal protein Snu66 as in yeast, however, unlike its S. cerevisiae homolog, human Hub1 is essential for viability. Prolonged in vivo depletion of human Hub1 leads to various cellular defects, including splicing speckle abnormalities, partial nuclear retention of mRNAs, mitotic catastrophe and consequently cell death by apoptosis. Early consequences of Hub1 depletion are severe splicing defects, however, only for specific splice sites leading to exon skipping and intron retention. Thus, the ubiquitin-like protein Hub1 is not a canonical spliceosomal factor needed generally for splicing, but rather a modulator of spliceosome performance and facilitator of alternative splicing.

Publication Title

The conserved ubiquitin-like protein Hub1 plays a critical role in splicing in human cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE27296
Targeting genes of AP-2d in the mouse midbrain
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Identification of AP-2d target genes in the midbrain of E15 mouse embryos

Publication Title

AP-2δ is a crucial transcriptional regulator of the posterior midbrain.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE3416
Diurnal gene expression in Arabidopsis thaliana Col-0 rosette leaves
  • organism-icon Arabidopsis thaliana
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

How do the transcript levels of leaf-expressed genes change in a normal day-night cycle? The interest is in genes that are regulated by the circadian clock and the diurnal component (i.e. light, metabolite changes). Plants were grown on soil in a 12/12 h light/dark rythm at 20C day and night. 5 weeks after germination the rosettes of the non-flowering plants were harvested, 15 plants per sample. Plants were harvested at 6 timepoints every 4 hours beginning with the end of the night (still in darkness).

Publication Title

Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE3424
Diurnal gene expression in rosette leaves of the phosphoglucomutase mutant (Col-0)
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

How do transcript levels of leaf-expressed genes change in a normal day-night cycle of the phosphoglucomutase (pgm) mutant? The interest is in genes that are regulated by the circadian clock and the diurnal component (i.e. light, metabolite changes). Plants were grown on soil in a 12/12 h light/dark rhythm at 20C day and night. 5 weeks after germination the rosettes of the non-flowering plants were harvested, 15 plants per sample. Plants were harvested in series at 6 times every 4 hours, beginning with the end of the night (still in darkness).

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE3423
Carbon fixation (endogenous sugar) and light-dependent gene expression
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Internal sugar and light specific dependent regulation of leaf gene expression was addressed by changing [CO2] to lower than compensation point [CO2] in combination with light or prolonged darkness. Plants were grown on soil in a 12/12 h light/dark rhythm at 20C day and night and under normal [CO2]. 5 weeks after germination, the above-ground rosettes of the non-flowering plants were harvested, 12 plants per sample. Plants were harvested 4hrs after the end of night (i) under low (< 50 ppm) [CO2] and 150 E fluorescent light , (ii) under normal [CO2] and light, and, (iii) under low [CO2] and prolonged darkness. The low [CO2] treatment started 30 min before the end of night and stopped with harvesting.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE33183
Gene Array Analyzer (GAA): Alternative usage of gene arrays to study alternative splicing events
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st), Affymetrix Mouse Exon 1.0 ST Array [transcript (gene) version (moex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Gene Array Analyzer: alternative usage of gene arrays to study alternative splicing events.

Sample Metadata Fields

Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact