Neurons and endothelial cells were identified by immunohistochemistry in human brains, isolated by laser-capture-microdissection and used to find genes preferentially expressed in the two cell types.
Evolution of neuronal and endothelial transcriptomes in primates.
Sex, Specimen part
View SamplesWe used a reciprocal cross of Mus musculus and M. domesticus in which F1 males are sterile in one direction and fertile in the other direction, in order to associate expression differences with sterility.
Widespread over-expression of the X chromosome in sterile F₁hybrid mice.
Specimen part
View SamplesIn order to assess the impact of three rounds of linear amplification on the technical reproducibility of gene expression measurements, we performed twelve microarray experiments. We analysed mouse RNA from cortex, cerebellum and liver from one individual. One RNA sample of 5g from each of the three different tissues was processed according to the standard Affymetrix protocol and hybridized onto mouse gene expression arrays MG_U74Av2. Three additional samples from each tissue of 1ng were processed according to a modified procedure that involves three linear amplifications before hybridization onto the microarray chips.
Evolution of neuronal and endothelial transcriptomes in primates.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MicroRNA-driven developmental remodeling in the brain distinguishes humans from other primates.
Sex, Age, Specimen part
View SamplesIn development, timing is of the utmost importance, and the timing of various developmental processes are often changed during evolution. During human evolution sexual maturation has been delayed relative to other primates and this may have played a critical role for both the increase of human brain size and the rise of human-specific cognitive traits .
Transcriptional neoteny in the human brain.
Sex, Age, Specimen part
View SamplesWe investigated molecular changes during human, chimpanzee, and rhesus macaque postnatal brain development at the transcriptome, proteome, and metabolome levels in two brain regions: the prefrontal cortex (PFC) that is involved in several human-specific cognitive processes, and the cerebellar cortex (CBC) that may be functionally more conserved. We find a nearly three-fold excess of human-specific gene expression changes in PFC compared to CBC. The most prominent human-specific mRNA expression pattern in the PFC is a developmental delay of approximately 5 years in the expression of genes associated with learning and memory, such as synaptic transmission and long-term potentiation. This pattern is supported by correlated changes in concentrations of proteins and the respective neurotransmitters and its magnitude is beyond the shift expected from the life-histories of the species. Mechanistically, it might be driven by change in timing of expression of four or more transcription factors. We speculate that delayed synaptic maturation in PFC may play a role in the emergence of human-specific cognitive abilities.
MicroRNA-driven developmental remodeling in the brain distinguishes humans from other primates.
Sex, Age, Specimen part
View SamplesWe investigated molecular changes during human, chimpanzee, and rhesus macaque postnatal brain development at the transcriptome, proteome, and metabolome levels in two brain regions: the prefrontal cortex (PFC) that is involved in several human-specific cognitive processes, and the cerebellar cortex (CBC) that may be functionally more conserved. We find a nearly three-fold excess of human-specific gene expression changes in PFC compared to CBC. The most prominent human-specific mRNA expression pattern in the PFC is a developmental delay of approximately 5 years in the expression of genes associated with learning and memory, such as synaptic transmission and long-term potentiation. This pattern is supported by correlated changes in concentrations of proteins and the respective neurotransmitters and its magnitude is beyond the shift expected from the life-histories of the species. Mechanistically, it might be driven by change in timing of expression of four or more transcription factors. We speculate that delayed synaptic maturation in PFC may play a role in the emergence of human-specific cognitive abilities.
MicroRNA-driven developmental remodeling in the brain distinguishes humans from other primates.
Sex, Age, Specimen part
View SamplesIn development, timing is of the utmost importance, and the timing of various developmental processes are often changed during evolution. During human evolution sexual maturation has been delayed relative to other primates and this may have played a critical role for both the increase of human brain size and the rise of human-specific cognitive traits .
Transcriptional neoteny in the human brain.
Sex, Age, Specimen part
View SamplesBeyond the DNA sequence difference between humans and closely related apes, there are large differences in the environments that these species experience. One prominent example for this is diet. The human diet diverges from those of other primates in various aspects, such as having a high calorie and protein content, as well as being cooked. Here, we used a laboratory mouse model to identify gene expression differences related to dietary differences.
Human and chimpanzee gene expression differences replicated in mice fed different diets.
Sex, Age
View SamplesBeyond the DNA sequence difference between humans and closely related apes, there are large differences in the environments that these species experience. One prominent example for this is diet. The human diet diverges from those of other primates in various aspects, such as having a high calorie and protein content, as well as being cooked. Here, we used a laboratory mouse model to identify gene expression differences related to dietary differences.
Human and chimpanzee gene expression differences replicated in mice fed different diets.
Sex, Age
View Samples