refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 12291 results
Sort by

Filters

Technology

Platform

accession-icon GSE42877
Expression data from mice peritoneal cells
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Sodium methyldithiocarbamate (SMD) is one of the most abundantly used conventional pesticides in the U.S. At dosages relevant to occupational exposure, it causes major effects on the immune system in mice, including a decreased resistance to sepsis. This lab has identified some of the mechanisms of action of this compound and some of the immunological parameters affected, but the global effects have not previously been assessed.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE34114
Temporal response of mouse peritoneal cells to a non-pathogenic E. coli infection
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Analysis of early and late changes in the mouse peritoneal cells in response to E. coli induced sepis. Result provide an insight into the molecular function and pathways expressed at these different time points.

Publication Title

Transcriptomic analysis of peritoneal cells in a mouse model of sepsis: confirmatory and novel results in early and late sepsis.

Sample Metadata Fields

Sex, Treatment

View Samples
accession-icon GSE47710
Porcine gene response following incision with energized devices
  • organism-icon Sus scrofa
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

This study compares the gene expression changes in Sus scrofa in response to two different methods for abdominal surgical incisions ; electrosurgery and harmonic blade.

Publication Title

Ultrasonic incisions produce less inflammatory mediator response during early healing than electrosurgical incisions.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE77708
Effect of Dietary Lysine on the Gene Expression Profile of Skeletal Muscle in Finishing Pigs
  • organism-icon Sus scrofa
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Porcine Gene 1.0 ST Array (porgene10st)

Description

The main goal of swine production is to convert feedstuffs into edible meat whose major component is skeletal muscle. The overall objective of this project is to study the effect of dietary lysine on the gene expression profile of skeletal muscle in late stage finishing pigs.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE27064
Rice endosperm: mRNA profiling and H3K27me3 occupancy
  • organism-icon Oryza sativa
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Comparison of four ChIP-Seq analytical algorithms using rice endosperm H3K27 trimethylation profiling data.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26840
Express data from rice endosperm
  • organism-icon Oryza sativa
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

Immatured rice seeds 7-8 days after pollination were used for expression analysis and matured rice leaf was used as control.

Publication Title

Comparison of four ChIP-Seq analytical algorithms using rice endosperm H3K27 trimethylation profiling data.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15211
Functional Modeling of Pressure Induced Gene Expression Reveals Mechanosensitive Signaling Pathways
  • organism-icon Sus scrofa
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

Multiple molecular and cellular mechanisms are associated with the initiation and progression of aortic valve disease. Alterations in ECM remodeling, increased expression of pro-inflammatory cytokines, calcification, lipid deposition and changes in valve cell phenotype have demonstrated roles in development of aortic valve disease. Mechanical stimulation has a significant role in determining the physiological properties of valve tissue and an altered hemodynamic environment may result in pathological changes.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE101749
Gene expression response to eupolauridine-9591 (E9591) and liriodenine methiodide (LMT) in Saccharomyces cerevisiae
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Eupolauridine and liriodenine are plant-derived aporphinoid alkaloids that exhibit potent inhibitory activity against the opportunistic fungal pathogens Candida albicans and Cryptococcus neoformans. However, the molecular mechanism of this antifungal activity is unknown. In this study, we show that eupolauridine 9591 (E9591), a synthetic analog of eupolauridine, and liriodenine methiodide (LMT), a methiodide salt of liriodenine, mediate their antifungal activities by disrupting mitochondrial iron-sulfur (Fe-S) cluster synthesis. Several lines of evidence supported this conclusion. First, both E9591 and LMT elicited a transcriptional response indicative of iron imbalance, causing the induction of genes that are required for iron uptake and for the maintenance of cellular iron homeostasis. Second, a genome-wide fitness profile analysis showed that yeast mutants with deletions in iron homeostasisrelated genes were hypersensitive to E9591 and LMT. Third, treatment of wild-type yeast cells with E9591 or LMT generated cellular defects that mimicked deficiencies in mitochondrial Fe-S cluster synthesis, including an increase in mitochondrial iron levels, a decrease in the activities of Fe-S cluster enzymes, a decrease in respiratory function, and an increase in oxidative stress. Collectively, our results demonstrate that E9591 and LMT perturb mitochondrial Fe-S cluster biosynthesis; thus, these two compounds target a cellular pathway that is distinct from the pathways commonly targeted by clinically used antifungal drugs. Therefore, the identification of this pathway as a target for antifungal compounds has potential applications in the development of new antifungal therapies.

Publication Title

Two plant-derived aporphinoid alkaloids exert their antifungal activity by disrupting mitochondrial iron-sulfur cluster biosynthesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE35604
Gene expression response to the antifungal compound 6-Nonadecynoic acid (6-NDA) in Saccharomyces cerevisiae and Candida albicans
  • organism-icon Saccharomyces cerevisiae, Candida albicans
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

6-Nonadecynoic acid (6-NDA), a plant-derived acetylenic acid, exhibits strong inhibitory activity against the human fungal pathogens Candida albicans, Aspergillus fumigatus, and Trichophyton mentagrophytes. In the present study, transcriptional profiling coupled with mutant and biochemical analyses were conducted using the model organism Saccharomyces cerevisiae to investigate the mechanism of action of this compound. 6-NDA elicited a transcriptome response indicative of fatty acid stress, altering the expression of genes known to be affected when yeast cells are grown in the presence of oleate. Mutants of S. cerevisiae lacking transcription factors that regulate fatty acid beta-oxidation showed increased sensitivity to 6-NDA. Fatty acid profile analysis indicated that 6-NDA inhibited the formation of fatty acids longer than 14 carbons in length. In addition, the growth inhibitory effect of 6-NDA was rescued in the presence of exogenously supplied oleate. To investigate the response of a pathogenic fungal species to 6-NDA, transcriptional profiling and biochemical analyses were also conducted in C. albicans. The transcriptional response and fatty acid profile of C. albicans were comparable to those obtained in S. cerevisiae, and the rescue of growth inhibition with exogenous oleate was also observed in C. albicans. In addition, 6-NDA enhanced the potency of the antifungal drug fluconazole in a fluconazole-resistant clinical isolate of C. albicans. Collectively, our results indicate that the antifungal activity of 6-NDA is mediated by a disruption in fatty acid homeostasis, and that this compound has potential utility in combination therapy in the treatment of drug-resistant fungal infections.

Publication Title

A potent plant-derived antifungal acetylenic acid mediates its activity by interfering with fatty acid homeostasis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE29004
Gene expression response to acrylamide in rat pups
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Acrylamide is a type-2 alkene monomer with established human neurotoxic effects. While the primary source of human exposure to acrylamide is occupational, other exposure sources include food, drinking water, and smoking. In this study, neurobehavioral assays coupled with transcriptional profiling analysis were conducted to assess both behavioral and gene expression effects induced by acrylamide neurotoxicity in rats when administered during early postnatal life. Acrylamide administration in rat pups induced significant characteristic neurotoxic symptoms including increased heel splay, decrease in grip strength, and decrease in locomotor activity. Transcriptome analysis with the Affymetrix Rat Genome 230 2.0 array indicated that acrylamide treatment caused a significant alteration in the expression of genes involved in muscle contraction, pain regulation, and dopaminergic neuronal pathways. First, in agreement with the observed behavioral effects, expression of the Mylpf gene involved in muscle contraction was downregulated in the spinal cord in response to acrylamide. Second, in sciatic nerves, acrylamide repressed the expression of the opioid receptor gene Oprk1 that is known to play a role in neuropathic pain regulation. Finally, in the cerebellum, acrylamide treatment caused a decrease in the expression of the nuclear receptor gene Nr4a2 that is required for development of dopaminergic neurons. Thus, our work examining the effect of acrylamide at the whole-genome level on a developmental mammalian model has identified novel genes previously not implicated in acrylamide neurotoxicity that can be further developed into biomarkers for assessing the risk of acrylamide exposure.

Publication Title

Neurobehavioral and transcriptional effects of acrylamide in juvenile rats.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact