Abstract Background Traumatic brain injury (TBI) results in irreversible damage at the site of impact and initiates cellular and molecular processes that lead to secondary neural injury in the surrounding tissue. We used microarray analysis to determine which genes, pathways and networks were significantly altered using a rat model of TBI. Adult rats received a unilateral controlled cortical impact (CCI) and were sacrificed 24h post-injury. The ipsilateral hemi-brain tissue at the site of the injury, the corresponding contralateral hemi-brain tissue, and nave (control) brain tissue were used for microarray analysis. Ingenuity Pathway Analysis (IPA) software was used to identify molecular pathways and networks that were associated with the altered gene expression in brain tissues following TBI. Results Inspection of the top fifteen biological functions in IPA associated with TBI in the ipsilateral tissues revealed that all had an inflammatory component. IPA analysis also indicated that inflammatory genes were altered on the contralateral side, but many of the genes were inversely expressed compared to the ipsilateral side. The contralateral gene expression pattern suggests a remote anti-inflammatory molecular response. We created a network of the inversely expressed common (i.e., same gene changed on both sides of the brain) inflammatory response (IR) genes and those IR genes included in pathways and networks identified by IPA that changed on only one side. We ranked the genes by the number of direct connections each had in the network, creating a gene interaction hierarchy (GIH). Two well characterized signaling pathways, toll-like receptor/NF-kappaB signaling and JAK/STAT signaling, were prominent in our GIH. Conclusions Bioinformatic analysis of microarray data following TBI identified key molecular pathways and networks associated with neural injury following TBI. The GIH created here provides a starting point for investigating therapeutic targets in a ranked order that is somewhat different than what has been presented previously. In addition to being a vehicle for identifying potential targets for post-TBI therapeutic strategies, our findings can also provide a context for evaluating the potential of therapeutic agents currently in development.
Gene expression patterns following unilateral traumatic brain injury reveals a local pro-inflammatory and remote anti-inflammatory response.
Specimen part, Treatment
View Sampleswe aimed to explore the potential therapeutic effects of human mesenchymal stem cell on severe liver disease
No associated publication
Sex, Specimen part, Cell line
View SamplesAnalyze of RNA expression of Old Fibroblast and Young Fibroblast. Compare RNA expression of Old Fibroblast to RNA expression of Young Fbroblast
No associated publication
Sex, Specimen part
View Sampleswe analysis of sham fibroblast and UVA fibroblast RNA expression using RNA sequencing and compare RNA expression.
No associated publication
Sex, Specimen part
View SamplesWe generate miR-25 KO mice by Cas-9 technology, and run 5 month kidney RNA sequencing.
No associated publication
Sex, Specimen part, Cell line
View SamplesAdult neural stem cells derived from wild type and Sirt1 conditional knockout mice were treated with or without X-ray, the total RNA extracted from these cells were used for RNA sequencing.
No associated publication
Sex, Age, Specimen part, Cell line
View SamplesNo description.
No associated publication
Sex, Age, Specimen part
View SamplesOxidized phospholipids are thought to promote atherogenesis by stimulating endothelial cells (ECs) to produce inflammatory cytokines, such as IL-8. In studies with mouse models, we previously demonstrated that genetic variation in inflammatory responses of endothelial cells to oxidized lipids contributes importantly to atherosclerosis susceptibility. We now show that similar variations occur in cultured aortic ECs derived from multiple heart transplant donors. These variations were stably maintained between passages and, thus, reflect either genetic or epigenetic regulatory differences. Expression array analysis of aortic EC cultures derived from 12 individuals revealed that >1,000 genes were regulated by oxidized phospholipids. We have used the observed variations in the sampled population to construct a gene coexpression network comprised of 15 modules of highly connected genes. We show that several identified modules are significantly enriched in genes for known pathways and confirm a module enriched for unfolded protein response (UPR) genes using siRNA and the UPR inducer tunicamycin. On the basis of the constructed network, we predicted that a gene of unknown function (MGC4504) present in the UPR module is a target for UPR transcriptional activator ATF4. Our data also indicate that IL-8 is present in the UPR module and is regulated, in part, by the UPR. We validate these by using siRNA. In conclusion, we show that interindividual variability can be used to group genes into pathways and predict gene-gene regulatory relationships, thus identifying targets potentially involved in susceptibility to common diseases such as atherosclerosis.
Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids.
Cell line, Subject
View SamplesThe dendritic cell (DC) is a master regulator of immune responses. Pathogenic viruses subvert normal immune function in DCs through the expression of immune antagonists. Understanding how these antagonists interact with the host immune system requires knowledge of the underlying genetic regulatory network that operates during an uninhibited antiviral response. In order to isolate and identify this network, we studied DCs infected with Newcastle Disease Virus (NDV), which is able to stimulate innate immunity and DC maturation through activation of RIG-I signaling, but lacks the ability to evade the human interferon response. To analyze this experimental model, we developed a new approach integrating genome-wide expression kinetics and time-dependent promoter analysis. We found that the genetic program underlying the antiviral cell state transition during the first 18-hours post-infection could be explained by a single regulatory network. Gene expression changes were driven by a step-wise multi-factor cascading control mechanism, where the specific transcription factors controlling expression changed over time. Within this network, most individual genes are regulated by multiple factors, indicating robustness against virus-encoded immune evasion genes. In addition to effectively recapitulating current biological knowledge, we predicted, and validated experimentally, antiviral roles for several novel transcription factors. More generally, our results show how a genetic program can be temporally controlled through a single regulatory network to achieve the large-scale genetic reprogramming characteristic of cell state transitions.
Antiviral response dictated by choreographed cascade of transcription factors.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MED12 Regulates HSC-Specific Enhancers Independently of Mediator Kinase Activity to Control Hematopoiesis.
Specimen part, Cell line
View Samples