After 2 and 12 weeks of treatment, we observed significant reductions of 51% and 72%, respectively, in SCORAD scores. Clinical improvements were associated with significant gene expression changes in lesional but also nonlesional skin, particularly reductions in levels of TH2-, TH22-, and some TH17-related molecules (ie, IL-13, IL-22, CCL17, S100As, and elafin/peptidase inhibitor 3), and modulation of epidermal hyperplasia and differentiation measures.
Cyclosporine in patients with atopic dermatitis modulates activated inflammatory pathways and reverses epidermal pathology.
Sex, Age, Time
View SamplesTofacitinib is an oral Janus kinase inhibitor being investigated for psoriasis. We sought to elucidate the molecular mechanisms underlying the clinical efficacy of tofacitinib in patients with psoriasis. Twelve patients with plaque psoriasis were randomized (3:1) to receive 10mg of tofacitinib or placebo twice daily for 12weeks. Biopsy specimens were taken from nonlesional (baseline) and lesional (baseline, days 1 and 3, and weeks 1, 2, 4, and 12) skin. Biopsy specimens were examined for psoriatic epidermal features (thickness, Ki67+ keratinocytes and keratin 16 [KRT16] mRNA expression, and phosphorylated signal transducer and activator of transcription [pSTAT]+ nuclei) and T-cell and dendritic cell (DC) subsets by using immunohistochemistry, and mRNA transcripts were quantified by using a microarray. In lesional skin keratinocyte pSTAT1 and pSTAT3 staining was increased at baseline but reduced after 1day of tofacitinib (baseline, median of 1290 pSTAT1+ cells/?m2; day 1, median of 332 pSTAT1+ cells/?m2; and nonlesional, median of 155 pSTAT1+ cells/?m2). Epidermal thickness and KRT16 mRNA expression were significantly and progressively reduced after days 1 and 3 of tofacitinib administration, respectively (eg, KRT16 decreased 2.74-fold, day 3 vs baseline, P=.016). Decreases in DC and T-cell numbers were observed after weeks 1 and 2, respectively. At week 4, significant decreases in IL-23/TH17 pathways were observed that persisted through week 12. Improvements in clinical and histologic features were strongly associated with changes in expression of psoriasis-related genes and reduction in IL-17 gene expression. Tofacitinib has a multitiered response in patients with psoriasis: (1) rapid attenuation of keratinocyte Janus kinase/STAT signaling; (2) removal of keratinocyte-induced cytokine signaling, leading to reductions in pathologic DC andT-cell numbers to nonlesional levels; and (3) inhibition of the IL-23/TH17 pathway.
Tofacitinib attenuates pathologic immune pathways in patients with psoriasis: A randomized phase 2 study.
Specimen part, Disease, Treatment, Subject, Time
View SamplesThe success of TNF inhibitors for treatment of psoriasis and other inflammatory diseases was previously attributed to blockade of innate immunity. In a clinical trial using etanercept TNF blocking agent to treat psoriasis vulgaris, we used affymetrix gene arrays to analyze broad gene profiles in lesional skin at multiple timepoints during drug treatment (baseline, and weeks 1, 2, 4 and 12) compared to non-lesional skin. This analysis created a temporal model of TNF-dependent gene regulation that informs molecular mechanisms of TNF-mediated inflammation. We identified four gene clusters that were differentially down-modulated during etanercept treatment: the cluster down-regulated most rapidly contained mostly dendritic cell activation genes. Culturing human keratinocytes with TNF, IFNg and IL-17 generated a list of keratinocyte genes regulated by each cytokine. The IL-17 pathway genes were strongly down-modulated early, whereas IFNg pathway genes were not down-modulated until final disease resolution at week 12. Finally, we show that TNF blockade rapidly inhibits IL-12/IL-23 p40 subunit expression, and that p40 neutralization inhibits psoriatic dermal migr-mediated Th17 polarization. We hypothesize that etanercept inhibits myeloid dendritic cell production of IL-23, a Th17 survival cytokine, resulting in rapid downregulation of IL-17 pathway genes. This data links effects of TNF blockade on the innate immune system with the adaptive immune system.
Effective treatment of psoriasis with etanercept is linked to suppression of IL-17 signaling, not immediate response TNF genes.
Subject, Time
View SamplesThe effect of anti-IL-17 treatment on systemic inflammation is not fully understand. Using cDNA microarray, genomic analysis methods such as GSEA and ingenuity, we characterized the transcriptional changes in the blood of psoriasis patients afer systemic neutralization of IL-17 compared to baseline (before treatment). We also compared the whole blood-derived transcriptome between psoraisis patients at baseline and healthy volunteers to examine systemic inflammation in psoriasis patients.
IL-17 induces inflammation-associated gene products in blood monocytes, and treatment with ixekizumab reduces their expression in psoriasis patient blood.
Specimen part, Subject, Time
View SamplesPsoriasis is a chronic, debilitating, immune-mediated inflammatory skin disease. As IFN- is involved in many cellular processes, including activation of T cells and dendritic cells (DCs), antigen processing and presentation, cell adhesion and trafficking, and cytokine and chemokine production, IFN--producing Th1 cells were proposed to be integral to the pathogenesis of psoriasis. Recently, IFN- was shown to enhance IL-23 and IL-1 production by DCs and subsequently induce Th17 cells, important contributors to the inflammatory cascade in psoriasis lesions. To determine if IFN- indeed induces the pathways leading to the development of psoriasis lesions, a single intradermal injection of IFN- was administered to an area of clinically normal, non-lesional skin of psoriasis patients and biopsies were collected 24 hours later. Although there were no visible changes in the skin, IFN- induced molecular and histological features characteristic of psoriasis lesions. IFN- increased a number of differentially expressed genes in the skin, including many chemokines concomitant with an influx of T cells and inflammatory DCs. Furthermore, inflammatory DC products TNF, iNOS, IL-23, and TRAIL were present in IFN--treated skin. Thus, IFN-, which is significantly elevated in non-lesional skin compared to healthy skin, appears to be a key pathogenic cytokine that can induce the inflammatory cascade in psoriasis.
A single intradermal injection of IFN-γ induces an inflammatory state in both non-lesional psoriatic and healthy skin.
Disease, Disease stage
View SamplesThe sensation of hunger after a period of fasting and the sensation of satiety after eating is crucial to behavioral regulation of food intake, but the biological mechanisms regulating these sensations are incompletely understood. We studied the behavioral and physiological adaptation to fasting in the vinegar fly (Drosophila melanogaster). Here we show that flies demonstrated increased behavioral attraction to food odor when food-deprived with no corresponding increase in sensitivity in the peripheral olfactory system. Flies increased their food intake transiently in the post-fasted state, but returned to a stable baseline feeding level within 24 hr after return to food. This modulation in feeding was accompanied by a significant increase in the size of the crop organ of the digestive system, suggesting that fasted flies responded both by increasing their food intake and storing reserve food in their crop. The post-fasting feeding response was observed in both male and female flies of diverse genetic backgrounds. Expression profiling of head, body, and chemosensory tissues by microarray analysis revealed several hundred genes that are regulated by feeding state, including 247 genes in the fly head. We performed RNA interference-mediated knockdown of, takeout, one of the genes strongly downregulated by fasting in multiple tissues. When takeout was knocked down in all neurons the post-fasting feeding response was abolished. These observations suggest that a coordinated transcriptional response to internal physiological state may regulate both ingestive behaviors and chemosensory perception of food
Post-fasting olfactory, transcriptional, and feeding responses in Drosophila.
Specimen part, Treatment, Time
View SamplesWe sought to characterize delayed-type hypersensitivity (DTH) responses elicited by topical hapten DPCP in normal human skin
Molecular characterization of human skin response to diphencyprone at peak and resolution phases: therapeutic insights.
Specimen part, Subject, Time
View SamplesThere is a controversy surrounding the existence of palmoplantar pustulosis (PPP) and palmoplantar pustular psoriasis (PPPP) as separate clinical entities or as variants of the same clinical entity. We used gene expression microarray to compare gene expression in PPP and PPPP. PPP and PPPP could not be differentiated using gene expression microarray suggesting that they are not distinct clinical entities. Increased expression of GPRIN1, and ADAM23 in keratinocytes suggests that these proteins could be new therapeutic targets for PPP/PPPP.
Based on Molecular Profiling of Gene Expression, Palmoplantar Pustulosis and Palmoplantar Pustular Psoriasis Are Highly Related Diseases that Appear to Be Distinct from Psoriasis Vulgaris.
Specimen part, Disease, Subject
View SamplesAtopic dermatitis (AD) is the most common inflammatory skin disease, with high unmet need for new therapies that are safe for chronic use. Emerging data suggest that TH2-cytokines play important roles in a variety of allergic and atopic conditions, including asthma and AD. In early phase clinical trials, dupilumab (a fully human monoclonal antibody against IL-4R that potently blocks IL-4 and IL-13 signaling) rapidly and markedly improved clinical measures in adults with either asthma (with elevated eosinophil counts) or moderate-to-severe AD. The pathomechanisms that may be impacted by IL-4/13 blockade in these disease settings have not yet been characterized in detail.
Dupilumab improves the molecular signature in skin of patients with moderate-to-severe atopic dermatitis.
Specimen part, Treatment, Subject, Time
View SamplesAtopic dermatitis (AD) is a common disease, with an increasing prevalence. The primary pathogenesis of the disease is still elusive, resulting in lack of specific treatments. The prevailing view is that AD is a biphasic, T-cell polarized disease, with Th2 predominating acute AD, and a switch to Th1 characterizing chronic disease. Identification of factors that participate in onset of lesions and maintenance of chronic lesions is critical for development of targeted therapeutics. We performed global genomic, molecular and cellular profiling of paired non-lesional, acute, and chronic skin biopsies from ten AD patients. Onset of acute lesions is associated with a striking increase in a subset of terminal differentiation proteins, specifically the IL-22-modulated S100A7-9. Correspondingly, acute disease is associated with significant increases in gene expression levels of the major Th22- (IL-22) and Th2- (IL-4, IL-31) cytokines and Th17-regulated genes (CCL20, PI3/Elafin), without significant changes in IL-17. A lesser induction of Th1- (IFN, MX-1, CXCL9-11) associated genes was detected in acute disease. Chronic skin lesions are characterized by significantly intensified activation of Th22, Th2 and Th1. Our data establish increased expression of S100A7-9 and other epidermal genes at onset of acute AD, with parallel activation of Th2 and Th22 cytokines. Our findings suggest an absence of switch mechanism in chronic disease and instead indicate that progression to chronic lesions is associated with intensified activation of immune axes that initiate onset of acute lesions, particularly Th22 and Th2. This alters the prevailing view of pathogenesis, with important therapeutic implications.
Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis.
Age, Subject
View Samples