refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 9931 results
Sort by

Filters

Technology

Platform

accession-icon GSE76055
Regulation of enhancer dynamics by MED12
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

MED12 Regulates HSC-Specific Enhancers Independently of Mediator Kinase Activity to Control Hematopoiesis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE92598
mTORC1 and -2 Coordinate Transcriptional and Translational Reprogramming in Resistance to DNA Damage and Replicative Stress in Breast Cancer Cells
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

mTOR coordinates growth signals with metabolic pathways and protein synthesis and is hyperactivated in many human cancers. We have characterized the coordinated mTORC1 and -2 transcription and translation response using genome-wide translatome and transcriptome profiling on cells inhibited in mTORC1/2 with PP242 or only mTORC1 with RAD001, with or without concurrent IR.

Publication Title

No associated publication

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE116387
mTORC1/2 inhibition re-sensitizes platinum-resistant ovarian cancer by disrupting selective translation of DNA damage and survival mRNAs
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Using platinum-resistant OVCAR-3 cells treated with the selective mTORC1/2 inhibitor INK128/MLN128, we conducted genome-wide transcription and translation studies and analyzed the effect on cell proliferation, AKT-mTOR signaling and cell survival, to determine whether carboplatin resistance involves selective mRNA translational reprogramming, and whether it is sensitive to mTORC1/2 inhibitio.n

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE117247
Ruxolitinib inhibits Cyclosporine-induced proliferation of cutaneous squamous cell carcinoma
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Organ transplant recipients (OTRs) on Cyclosporine A (CSA) are prone to catastrophic cutaneous squamous cell carcinoma (SCC). Allograft-sparing, cancer-targeting systemic treatments are unavailable. We have shown increased risk for catastrophic SCC in OTRs via CSA-mediated induction of Interleukin-22 (IL-22). Herein, we found CSA drives SCC proliferation and tumor growth through IL-22 and JAK/STAT pathway induction. We in turn inhibited SCC growth with an FDA-approved JAK 1/2 inhibitor, Ruxolitinib. In human SCC cells, greatest proliferative response to IL-22 and CSA treatment occurred in non-metastasizing lines. IL-22 treatment upregulated JAK1 and STAT1/3 in A431 SCC cells. JAK/STAT pathway genes were highly expressed in tumors from a cohort of CSA-exposed OTRs, and in SCC with high risk for metastasis. Compared to immunocompetent SCC, genes associated with innate immunity, response to DNA damage and p53 regulation were differentially expressed in SCC from OTRs. In nude mice engrafted with human A431 cells, IL-22 and CSA treatment increased tumor growth and upregulated IL-22 receptor, JAK1 and STAT 1/3 expression. Ruxolitinib treatment significantly reduced tumor volume and reversed the accelerated tumor growth. CSA and IL-22 exacerbate aggressive behavior in SCC. Targeting the IL-22 axis via selective JAK/STAT inhibition may reduce the progression of aggressive SCC in OTRs, without compromising immunosuppression.

Publication Title

Ruxolitinib inhibits cyclosporine-induced proliferation of cutaneous squamous cell carcinoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE81648
The effect of antibiotic mediated gut microbiome perturbation on ileal gene expression in NOD mice.
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The early life microbiome plays important roles in host immunological and metabolic development. Because type 1 diabetes (T1D) incidence has been increasing substantially in recent decades, we hypothesized that early-life antibiotic use alters gut microbiota that predisposes to disease. Using NOD mice that are genetically susceptible to T1D, we examined the effects of exposure to either continuous low-dose antibiotics or pulsed therapeutic antibiotics (PAT) early in life, mimicking childhood exposures. We found that in mice receiving PAT, T1D incidence was significantly higher, microbial community composition and structure differed compared with controls. In pre-diabetic male PAT mice, the intestinal lamina propria had lower Th17 and T reg proportions and intestinal SAA expression than in controls, suggesting key roles in transducing the altered microbiota signals. PAT affected microbial lipid metabolism and host cholesterol biosynthetic gene expression. These findings show that early-life antibiotic treatments alter the gut microbiota and its metabolic capacities, intestinal gene expression, and T-cell populations, accelerating T1D onset in NOD mice.

Publication Title

Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon GSE26487
Effects of Glucocorticoids in Epidermal Keratinocytes
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Glucocorticoids (GCs) have a long history of use as therapeutic agents for numerous skin diseases. Surprisingly, their specific molecular effects are largely unknown. To characterize GC action in epidermis, we compared the transcriptional profiles of primary human keratinocytes untreated and treated with dexamethasone (DEX) for 1, 4, 24, 48 and 72 hours using large-scale microarray analyses. The majority of genes were found regulated only after 24 hours and remained regulated throughout the treatment. In addition to expected anti-inflammatory genes, we found that GCs regulate cell fate, tissue remodeling, cell motility, differentiation and metabolism. GCs not only effectively block signaling by TNF-alpha and IL-1 but also by IFN-gamma, which was not previously known. Specifically, GCs suppress the expression of essentially all IFN-gamma-regulated genes, including IFN-gamma receptor and STAT-1. GCs also block STAT-1 activation and nuclear translocation. Unexpectedly, GCs have anti-apoptotic effects in keratinocytes by inducing the expression of anti-apoptotic and repressing pro-apoptotic genes. Consequently, GCs treatment blocked UV-induced apoptosis of keratinocytes. GCs have a profound effect on wound healing by inhibiting cell motility and the expression of pro-angiogenic factor VEGF. They play an important role in tissue remodeling and scar formation by suppressing the expression of TGF-beta-1 and -2, MMP1, 2, 9 and 10 and inducing TIMP-2. Finally, GCs promote terminal stages of epidermal differentiation while simultaneously inhibiting the early stages. These results provide new insights into the beneficial and adverse effects of GCs in epidermis, defining the participating genes and mechanisms that coordinate the cellular responses important for GC-based therapies.

Publication Title

Novel genomic effects of glucocorticoids in epidermal keratinocytes: inhibition of apoptosis, interferon-gamma pathway, and wound healing along with promotion of terminal differentiation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE2822
Oncostatin experiment
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Cultured epidermal keratinocytes treated with OsM 1, 4, 24 & 48hrs, and Skinethic epidermal substitutes treated 1, 4, 24, 48h & 7days, each with untreated control

Publication Title

Transcriptional responses of human epidermal keratinocytes to Oncostatin-M.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE50591
Transcriptional Profiling Defines the Roles of ERK and p38 Kinases in Epidermal Keratinocytes
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Epidermal keratinocytes respond to extracellular influences by activating cytoplasmic signal transduction pathways that change the transcriptional profiles of affected cells. To define responses to two such pathways, p38 and ERK, we used SB203580 and PD98059 as specific inhibitors, and identified the regulated genes after 1, 4, 24 and 48 hrs, using Affymetrix Hu133Av2 microarrays. Additionally, we compared genes specifically regulated by p38 and ERKs with those regulated by JNK and by all three pathways simultaneously. We find that the p38 pathway induces the expression of extracellular matrix and proliferation-associated genes, while suppressing microtubule-associated genes; the ERK pathway induces the expression of nuclear envelope and mRNA splicing proteins, while suppressing steroid synthesis and mitochondrial energy production enzymes. Both pathways promote epidermal differentiation and induce feedback inactivation of MAPK signaling. c-FOS, SRY and N-Myc appear to be the principal targets of the p38 pathway, Elk-1 SAP1 and HLH2 of ERK, while FREAC-4, ARNT and USF are common to both. The results for the first time comprehensively define the genes regulated by the p38 and ERK pathways in epidermal keratinocytes and suggest a list of targets potentially useful in therapeutic interventions.

Publication Title

Transcriptional profiling defines the roles of ERK and p38 kinases in epidermal keratinocytes.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE2489
TNF & Parthenolide treatment of keratinocytes
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Cultured keratinocytes treated with TNFa in the presence or absence of NFkB inhibitor; time course 1, 4, 24 & 48 hrs.

Publication Title

Pathway-specific profiling identifies the NF-kappa B-dependent tumor necrosis factor alpha-regulated genes in epidermal keratinocytes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22298
Human epidermal keratinocytes treated with retinoic acid or thyroid hormone
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Targets of Retinoic Acid (RA) were identified in primary human epidermal keratinocytes grown in the presence or absence of all-trans retinoic acid for 1, 4, 24, 48 and 72 hours. Targets of Thyroid Hormone (T3) were identified in primary human epidermal keratinocytes grown in the presence or absence of the hormone; same controls as for RA.

Publication Title

Retinoid-responsive transcriptional changes in epidermal keratinocytes.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact