Identification of genes up-regulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas.
Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas.
Sex, Age, Specimen part
View SamplesGene expression data were obtained from 130 pediatric AML patients who were enrolled on the AML99 study conducted by the Japanese Childhood AML Cooperative Study Group.
No associated publication
No sample metadata fields
View SamplesPoorly differentiated type synovial sarcoma (PDSS) is a variant of synovial sarcoma characterized by predominantly round or short-spindled cells. Although accumulating evidence from clinicopathological studies suggests a strong association between this variant of synovial sarcoma and poor prognosis, little has been reported on the molecular basis of PDSS. To gain insight into the mechanism(s) that underlie the emergence of PDSS, we analyzed the gene expression profiles of 34 synovial sarcoma clinical samples, including 5 cases of PDSS, using an oligonucleotide microarray. In an unsupervised analysis, the 34 samples fell into 3 groups that correlated highly with histological subtype, namely, monophasic, biphasic, and poorly differentiated types. PDSS was characterized by down-regulation of genes associated with neuronal and skeletal development and cell adhesion, and up-regulation of genes on a specific chromosomal locus, 8q21.11. This locus-specific transcriptional activation in PDSS was confirmed by reverse transcriptase (RT)-PCR analysis of 9 additional synovial sarcoma samples. Our results indicate that PDSS tumors constitute a distinct genetic group based on expression profiles.
Gene expression profiling of synovial sarcoma: distinct signature of poorly differentiated type.
Sex, Specimen part
View SamplesOsteosarcoma patients with development of pulmonary metastasis have still poorer prognosis in spite of aggressive treatment. However, molecular mechanism of metastasis is still unknown.
Reduced argininosuccinate synthetase is a predictive biomarker for the development of pulmonary metastasis in patients with osteosarcoma.
Sex, Age
View SamplesAberrant DNA methylation is induced at specific promoter CpG islands (CGIs) in contrast with mutations. The specificity is influenced by genome architecture and epigenetic factors, but their relationship is still unknown. In this study, we isolated promoter CGIs susceptible and resistant to aberrant methylation induction during prostate and breast carcinogenesis. The effect of genome architecture was more evident for promoter CGIs susceptible in both of the two tissues than for promoter CGIs susceptible only in one tissue. Multivariate analysis of promoter CGIs with tissue-nonspecific susceptibility showed that genome architecture, namely a remote location from SINE (OR=5.98; 95% CI=2.33-15.34) and from LINE (OR=2.08; 95% CI=1.03-4.21), was associated with increased susceptibility, independent of epigenetic factors such as the presence of RNA polymerase II (OR=0.09; 95% CI=0.02-0.48) and H3K27me3 (OR=3.28; 95% CI=1.17-9.21). These results showed that methylation susceptibility of promoter CGIs is determined both by genome architecture and epigenetic factors, independently.
Effects of genome architecture and epigenetic factors on susceptibility of promoter CpG islands to aberrant DNA methylation induction.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Forced expression of the histone demethylase Fbxl10 maintains self-renewing hematopoietic stem cells.
Specimen part
View SamplesThe host antitumor immunity changes drastically during carcinogenesis. Intraductal papillary-mucinous neoplasm (IPMN) of the pancreas is a precursor lesion of pancreatic cancer and progresses according to adenoma-carcinoma sequence. We found that the host antitumor immune reaction changes from an immune response to immune tolerance between intraductal papillary-mucinous adenoma (IPMA) and intraductal papillary-mucinous carcinoma (IPMC).
CXCL17 and ICAM2 are associated with a potential anti-tumor immune response in early intraepithelial stages of human pancreatic carcinogenesis.
Specimen part, Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
IDH2 and NPM1 Mutations Cooperate to Activate Hoxa9/Meis1 and Hypoxia Pathways in Acute Myeloid Leukemia.
Specimen part
View SamplesInstructive mechanisms are present for induction of DNA methylation, as shown by methylation of specific CpG islands (CGIs) by specific inducers and in specific cancers. However, instructive factors involved are poorly understood, except for involvement of low transcription and trimethylation of histone H3 lysine 27 (H3K27me3). Here, we used methylated DNA immunoprecipitation (MeDIP) combined with a CGI oligonucleotide microarray analysis, and identified 5510 and 521 genes with promoter CGIs resistant and susceptible, respectively, to DNA methylation in prostate cancer cell lines. Expression analysis revealed that the susceptible genes had low transcription in a normal prostatic epithelial cell line. Chromatin immunoprecipitation with microarray hybridization (CHiP-chip) analysis of RNA polymerase II (Pol II) and histone modifications showed that, even among the genes with low transcription, the presence of Pol II was associated with marked resistance to DNA methylation (OR = 0.22; 95% CI = 0.12-0.38), and H3K27me3 was associated with increased susceptibility (OR = 11.20; 95% CI = 7.14-17.55). The same was true in normal human mammary epithelial cells for 5430 and 733 genes resistant and susceptible, respectively, to DNA methylation in breast cancer cell lines. These results showed that the presence of Pol II, active or stalled, and H3K27me3 can predict the epigenetic fate of promoter CGIs independently of transcription levels.
The presence of RNA polymerase II, active or stalled, predicts epigenetic fate of promoter CpG islands.
Cell line
View SamplesEach fraction of mouse hematopoietic cells was purified by cell sorting from bone marrow of 8-week-old C57BL/6 mice, and its gene expression was analyzed.
Forced expression of the histone demethylase Fbxl10 maintains self-renewing hematopoietic stem cells.
Specimen part
View Samples