The purpose of this study is to obtain comprehensive gene expression profiles in breast cancer. Mammary gland cells were specifically isolated from 433 clinical tissue samples by laser capture microdissection (LCM). Total RNAs were extracted from LCM captured samples. We investigated gene expression profiles in 417 patients with breast cancer and 16 non-tumor tissues as a normal control using an Affymetrix GeneChip.
Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients.
Specimen part
View SamplesALL is the most common form of childhood cancer with >80% cured with contemporary treatment protocols. Accurate risk stratification in childhood ALL is essential to avoid under- and over-treatment. Currently, we use presenting clinical, biological features, and minimal residual disease (MRD) quantitation to risk stratify patients. Although whole genome gene expression profiling (GEP) can accurately classify patients with ALL into various WHO 2008 defined subgroups, its value in predicting relapse remained to be defined. We hypothesized that global time-series GEPs of bone marrow (BM) samples at diagnosis and specific points during initial remission-induction therapy can measure the success of cytoreduction and be used for relapse prediction.
Effective Response Metric: a novel tool to predict relapse in childhood acute lymphoblastic leukaemia using time-series gene expression profiling.
Specimen part, Disease, Subject, Time
View SamplesChemo-resistance to platinum such as cisplatin is critical in the treatment of ovarian cancer. Recent evidences have linked epithelial-mesenchymal transition (EMT) with the drug resistance as a contributing mechanism. The current study explored the connection between cellular responses to cisplatin with EMT in ovarian cancer.
Epithelial-mesenchymal status renders differential responses to cisplatin in ovarian cancer.
Specimen part, Cell line, Treatment
View SamplesA collection of 100 ovarian cancer sample gene expression data from Singapore.
CSIOVDB: a microarray gene expression database of epithelial ovarian cancer subtype.
Specimen part, Subject
View SamplesWe have made use of the E-myc transgenic mouse, a model for the study of B-cell lymphoma development that is initiated through a defined genetic alteration, to explore the contributions of additional somatic alterations that contribute to the heterogeneity of the resulting tumors. As one example of such heterogeneity, we have focused on the observation that lymphomas develop in E-myc mice with a variable time of onset. Twenty-five early-onset, 25 late-onset lymphomas and 10 normal samples were each assayed on an Affymetrix Mouse Genome 430 2.0 array.
Utilization of pathway signatures to reveal distinct types of B lymphoma in the Emicro-myc model and human diffuse large B-cell lymphoma.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus.
Sex, Specimen part, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Anchorage-independent cell growth signature identifies tumors with metastatic potential.
Specimen part, Cell line
View SamplesIn this study, we compared the expression profiles of miRNAs in blood samples from Impaired Fasting Glucose (IFG) and T2D male patients. Healthy adult males with no past history of T2D (n=158) and with desirable cholesterol and blood pressure profiles were enrolled in this study. They were then classified according to fasting glucose levels to have T2D, IFG or as healthy controls (CTL), for comparison of miRNA expression profiles. Employing miRNA microarray, we identified signature miRNAs in peripheral blood samples that distinguished IFG and T2D. Eight selected miRNAs were further validated using stem-loop real-time RT-PCR. miR-144 expression was found to be dysregulated in Type 2 Diabetes, wherein its expression was significantly higher than in healthy controls. Insulin receptor substrate 1 (IRS1) has been predicted to be a potential target of miR-144. Consistent with this observation, IRS1 mRNA and protein levels, verified by quantitative real-time PCR and western blotting respectively, were found to be down-regulated.
MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus.
Sex
View SamplesHuman Whartons jelly stem cells (hWJSCs) are derived ethically in large amounts from the umbilical cord matrix. Besides their differentiation capabilities, WJSCs also display a notable lack of ability to form teratoma. hWJSCs have been shown to exert immunomodulatory effects and have recently been reported to kill or diminish cancer cell growth. These characteristics are important considerations for their use in cell therapy. In this transcriptome analysis, hWJSCs were profiled using Affymetrix DNA microarrays and compared to a panel of human stem cells and stromal cells. Although hWJSCs are multipotent, they expressed very low levels of the majority of stem cell markers, including POU5F1, NANOG, SOX2 and LIN28. BIRC5 has recently been shown to be required for teratoma formation in SCID mice. The lower levels of BIRC5 expression in hWJSCs compared to hESCs and the very low levels of stem cell markers might account for hWJSCs inability to form teratomas. IL12A which is known to be associated with the induction of apoptosis, was amongst the several cytokines identified to be significantly upregulated in hWJSCs. The ability of hWJSCs to compliment the host immune responses was further highlighted with the GO Biological Process analysis showing high association with immune system, chemotaxis and cell death. The ability to modulate immune responses confers hWJSCs an additional advantage in stem cell therapy and potentially allows hWJSCs as a form of treatment for cancer and immune disorders. In summary, the transcriptome profile of hWJSCs has provided indications on the genetic basis for their biological characteristics in immunomodulatory response, anti-cancer effects, and the lack of teratoma formation.
Human Wharton's jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells.
Specimen part
View SamplesWe extracted RNA of 39 mouse tissue of various genotypes and performed expression microarrays. Subsequently a screen was conducted using the Sleeping Beauty (SB) transposon to identify breast cancer candidate genes.
No associated publication
Specimen part
View Samples